[1]吕玥,殷勇高.填料表面参数对LiCl溶液降膜润湿性的影响[J].东南大学学报(自然科学版),2020,50(5):889-895.[doi:10.3969/j.issn.1001-0505.2020.05.014]
 Lü Yue,Yin Yonggao.Effects of filler surface conditions on falling-film plate wettability using LiCl-H2O[J].Journal of Southeast University (Natural Science Edition),2020,50(5):889-895.[doi:10.3969/j.issn.1001-0505.2020.05.014]
点击复制

填料表面参数对LiCl溶液降膜润湿性的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第5期
页码:
889-895
栏目:
能源与动力工程
出版日期:
2020-09-20

文章信息/Info

Title:
Effects of filler surface conditions on falling-film plate wettability using LiCl-H2O
作者:
吕玥殷勇高
东南大学能源与环境学院, 南京 210096; 东南大学低碳型建筑环境设备与系统节能教育部工程研究中心, 南京 210096
Author(s):
Lü Yue Yin Yonggao
School of Energy and Environment, Southeast University, Nanjing 210096, China
Engineering Research Center for Building Energy Environment and Equipments, Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
溶液除湿 润湿性 临界喷淋量 填料表面参数
Keywords:
liquid desiccant wettability critical amount of spray filler surface conditions
分类号:
TU831.6
DOI:
10.3969/j.issn.1001-0505.2020.05.014
摘要:
针对改善溶液除湿空调系统中填料表面润湿性的问题,通过CFD模拟研究了填料表面倾斜角、接触角和表面形态对LiCl-H2O降膜润湿性及临界喷淋量的影响.模拟结果表明:填料表面的倾斜角越小,溶液液膜表面波动性越小,润湿性越好;填料表面的接触角越小,润湿性越好,达到满膜流动所需的临界喷淋量越小;接触角从40°变化到60°时临界喷淋量的增长量最大.在小喷淋量下,波形填料表面的润湿性较平板填料表面有显著提升;当喷淋量为0.288 m3 /(m·h)时,5 mm波高的波形填料表面的润湿率比平板表面增加超过50%;波高增大,润湿率虽有提高,但增加量仅在5%左右.另外,由于波形表面上液膜的稳定性较差,故满足满膜流动所需的临界喷淋量要比平板表面大.
Abstract:
To improve the wettability of the filler surface in the liquid desiccant air conditioning system, the effects of tilt angles contact angles and surface morphologies on the filler surface on wettability and the critical amount of spray using LiCl-H2O were studied by computational fluid dynamics(CFD)simulation. The results show that the smaller the surface tilt angle, the smaller the fluctuation of the solution film surface and the better the wettability. The smaller the contact angle of the filler surface, the better the wettability the smaller the critical amount of spray required to reach the full-film flow. The critical amount of spray increases significantly when the contact angle of the filler surface changes from 40° to 60°. The wettability of the wavy filler surface is significantly improved compared with that of the flat filler surface for a small amount of spray. When the amount of spray is 0.288 m3/(m·h), the wetting ratio of the wavy filler surface with 5 mm wave height is more than 50% larger than that of the flat surface. Although the wetting ratio increases with the increase of the wave height, the growth of the wetting ratio is only about 5%. In addition, because the stability of the liquid film on the wavy surface is poor, the critical amount of spray required for the wavy surface is larger than that of the flat surface.

参考文献/References:

[1] Mei L, Dai Y J. A technical review on use of liquid-desiccant dehumidification for air-conditioning application[J]. Renewable and Sustainable Energy Reviews, 2008, 12(3): 662-689. DOI:10.1016/j.rser.2006.10.006.
[2] Dieckmann J, Roth K, Brodrick J. Emerging technologies: Liquid desiccant air conditioners[J]. ASHRAE Journal, 2008, 50(10):90-95. DOI:10.1260/136943308786412014.
[3] Gommed K, Grossman G. Experimental investigation of a liquid desiccant system for solar cooling and dehumidification[J]. Solar Energy, 2007, 81(1): 131-138. DOI:10.1016/j.solener.2006.05.006.
[4] El-Genk M S, Saber H H. An investigation of the breakup of an evaporating liquid film, falling down a vertical, uniformly heated wall[J]. Journal of Heat Transfer, 2002, 124(1): 39-50. DOI:10.1115/1.1420712.
[5] Mortazavi M, Nasr Isfahani R, Bigham S, et al. Absorption characteristics of falling film LiBr(lithium bromide)solution over a finned structure[J]. Energy, 2015, 87: 270-278. DOI:10.1016/j.energy.2015.04.074.
[6] Fumey B, Weber R, Gantenbein P, et al. Operation results of a closed sorption heat storage prototype[J]. Energy Procedia, 2015, 73: 324-330. DOI:10.1016/j.egypro.2015.07.698.
[7] Zhang L, Hihara E, Matsuoka F, et al. Experimental analysis of mass transfer in adiabatic structured packing dehumidifier/regenerator with liquid desiccant[J]. International Journal of Heat and Mass Transfer, 2010, 53(13/14): 2856-2863. DOI:10.1016/j.ijheatmasstransfer.2010.02.012.
[8] Lan H, Wegener J L, Armaly B F, et al. Developing laminar gravity-driven thin liquid film flow down an inclined plane[J]. Journal of Fluids Engineering, 2010, 132(8): 081301. DOI:10.1115/1.4002109.
[9] 谭丽媛, 袁希钢, Kalbassi Mohammad Ali. 规整填料表面液体分布的计算流体力学[J]. 化工进展, 2015, 34(9): 3221-3231, 3237. DOI:10.16085/j.issn.1000-6613.2015.09.003.
Tan L Y, Yuan X G, Kalbassi M A. Computational fluid dynamics study of liquid distribution on structured packing surface[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3221-3231, 3237. DOI:10.16085/j.issn.1000-6613.2015.09.003. (in Chinese)
[10] 谷芳. 规整填料局部流动与传质的计算流体力学研究[D]. 天津: 天津大学, 2004.
  Gu F. CFD simulations of the local-flow and mass-transfer in the structured packing[D]. Tianjin: Tianjin University, 2004.(in Chinese)
[11] 谭丽媛, 袁希钢, Kalbassi Mohammad Ali. 规整填料结构对液相分布影响的计算流体力学[J]. 化工进展, 2015, 34(11): 3869-3878. DOI:10.16085/j.issn.1000-6613.2015.11.008.
Tan L Y, Yuan X G, Kalbssi M A. Effect of structured packing’s structure on liquid distribution by computational fluid dynamics[J]. Chemical Industry and Engineering Progress, 2015, 34(11): 3869-3878. DOI:10.16085/j.issn.1000-6613.2015.11.008. (in Chinese)
[12] Iso Y, Chen X. Flow transition behavior of the wetting flow between the film flow and rivulet flow on an inclined wall[J]. Journal of Fluids Engineering, 2011, 133(9): 091101. DOI:10.1115/1.4004765.
[13] Iso Y, Huang J, Kato M, et al. Numerical and experimental study on liquid film flows on packing elements in absorbers for post-combustion CO2 capture[J]. Energy Procedia, 2013, 37: 860-868. DOI:10.1016/j.egypro.2013.05.178.
[14] Lyu Y, Yin Y G, Zhang X S, et al. Investigation of falling-film plate wettability characteristics under dehumidification and regeneration conditions using LiCl-H2O[J]. International Journal of Refrigeration, 2018, 94: 118-126. DOI:10.1016/j.ijrefrig.2018.07.002.
[15] Taha T, Cui Z F. CFD modelling of slug flow in vertical tubes[J]. Chemical Engineering Science, 2006, 61(2): 676-687. DOI:10.1016/j.ces.2005.07.022.
[16] van der Graaf S, Nisisako T, Schroën C G P H, et al. Lattice boltzmann simulations of droplet formation in a T-shaped microchannel[J]. Langmuir, 2006, 22(9): 4144-4152. DOI:10.1021/la052682f.
[17] Pozrikidis C. Interfacial dynamics for stokes flow[J]. Journal of Computational Physics, 2001, 169(2): 250-301. DOI:10.1006/jcph.2000.6582.
[18] Utada A S, Fernandez-Nieves A, Stone H A, et al. Dripping to jetting transitions in coflowing liquid streams[J]. Physical Review Letters, 2007, 99(9): 094502. DOI:10.1103/PhysRevLett.99.094502.
[19] Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. DOI:10.1016/0021-9991(92)90240-Y.
[20] Conde M R. Properties of aqueous solutions of lithium and calcium chlorides: Formulations for use in air conditioning equipment design[J]. International Journal of Thermal Sciences, 2004, 43(4): 367-382. DOI:10.1016/j.ijthermalsci.2003.09.003.
[21] 王双成. 液态饱和水的物性计算[J]. 化工设计, 1999, 9(6): 3-5. DOI:10.15910/j.cnki.1007-6247.1999.06.009.
Wang S C. Physical property calculation of liquid saturated water[J]. Chemical Engineering Design, 1999, 9(6): 3-5. DOI:10.15910/j.cnki.1007-6247.1999.06.009. (in Chinese)

相似文献/References:

[1]吴晓婧,薛烽,周健,等.Cu,Ni对Sn-Zn-Al无铅焊料组织和性能的影响[J].东南大学学报(自然科学版),2009,39(3):623.[doi:10.3969/j.issn.1001-0505.2009.03.038]
 Wu Xiaojing,Xue Feng,Zhou Jian,et al.Effect of Cu and Ni on microstructure and properties of Sn-Zn-Al lead-free solders[J].Journal of Southeast University (Natural Science Edition),2009,39(5):623.[doi:10.3969/j.issn.1001-0505.2009.03.038]
[2]蒋毅,张小松,殷勇高.溶液除湿蒸发冷却系统构建及其性能[J].东南大学学报(自然科学版),2006,36(5):780.[doi:10.3969/j.issn.1001-0505.2006.05.020]
 Jiang Yi,Zhang Xiaosong,Yin Yonggao.Construct and performance research on liquid desiccant evaporative cooling system[J].Journal of Southeast University (Natural Science Edition),2006,36(5):780.[doi:10.3969/j.issn.1001-0505.2006.05.020]
[3]殷勇高,张小松,李应林,等.蓄能型太阳能溶液除湿蒸发冷却空调系统研究[J].东南大学学报(自然科学版),2005,35(1):73.[doi:10.3969/j.issn.1001-0505.2005.01.016]
 Yin Yonggao,Zhang Xiaosong,Li Yinglin,et al.Investigation of solar powered liquor desiccant evaporation cooling air conditioning system with energy storage[J].Journal of Southeast University (Natural Science Edition),2005,35(5):73.[doi:10.3969/j.issn.1001-0505.2005.01.016]
[4]薛烽,周健,李培培,等.界面反应及界面张力对Sn-Zn-Bi焊料润湿性的影响[J].东南大学学报(自然科学版),2007,37(4):634.[doi:10.3969/j.issn.1001-0505.2007.04.018]
 Xue Feng,Zhou Jian,Li Peipei,et al.Effect of interface reaction and interface tension on wettability of Sn-Zn-Bi solders[J].Journal of Southeast University (Natural Science Edition),2007,37(5):634.[doi:10.3969/j.issn.1001-0505.2007.04.018]
[5]马立群,陈锋,舒光冀.超声在制备SiC/Al-Mg颗粒增强复合材料中的应用[J].东南大学学报(自然科学版),1995,25(2):50.[doi:10.3969/j.issn.1001-0505.1995.02.009]
 Ma Liqun,Chen Feng,et al.Effect of Ultrasonic on Preparation of SiC/Al-Mg particulate Reinforced Composites[J].Journal of Southeast University (Natural Science Edition),1995,25(5):50.[doi:10.3969/j.issn.1001-0505.1995.02.009]
[6]程清,张小松.一种用于除湿溶液的新型太阳能耦合再生系统[J].东南大学学报(自然科学版),2014,44(1):110.[doi:10.3969/j.issn.1001-0505.2014.01.020]
 Cheng Qing,Zhang Xiaosong.A new solar coupling regeneration system for liquid desiccant[J].Journal of Southeast University (Natural Science Edition),2014,44(5):110.[doi:10.3969/j.issn.1001-0505.2014.01.020]
[7]成洁,殷勇高,张凡.低品位热驱动混合溶液除湿降温系统性能分析[J].东南大学学报(自然科学版),2019,49(1):148.[doi:10.3969/j.issn.1001-0505.2019.01.021]
 Cheng Jie,Yin Yonggao,Zhang Fan.Performance analysis of liquid desiccant cooling system using mixed solution driven by low-grade heat source[J].Journal of Southeast University (Natural Science Edition),2019,49(5):148.[doi:10.3969/j.issn.1001-0505.2019.01.021]
[8]周磊,杨树莹,吴新,等.表面活性剂增强喷雾对褐煤细颗粒物的抑制[J].东南大学学报(自然科学版),2019,49(2):280.[doi:10.3969/j.issn.1001-0505.2019.02.012]
 Zhou Lei,Yang Shuying,Wu Xin,et al.Enhancing suppression performance of spray on lignite fine particles by adding surfactant[J].Journal of Southeast University (Natural Science Edition),2019,49(5):280.[doi:10.3969/j.issn.1001-0505.2019.02.012]
[9]陈博闻,殷勇高,张凡,等.新型低品位热驱动吸收式高效空调系统[J].东南大学学报(自然科学版),2020,50(5):882.[doi:10.3969/j.issn.1001-0505.2020.05.013]
 Chen Bowen,Yin Yonggao,Zhang Fan,et al.New type of energy efficient absorption air conditioning system driven by low-grade heat[J].Journal of Southeast University (Natural Science Edition),2020,50(5):882.[doi:10.3969/j.issn.1001-0505.2020.05.013]
[10]张园园,张军,尹杰,等.磁化水对燃煤PM2.5润湿性的影响[J].东南大学学报(自然科学版),2020,50(5):904.[doi:10.3969/j.issn.1001-0505.2020.05.016]
 Zhang Yuanyuan,Zhang Jun,Yin Jie,et al.Effect of magnetized water on wettability of coal-fired PM2.5[J].Journal of Southeast University (Natural Science Edition),2020,50(5):904.[doi:10.3969/j.issn.1001-0505.2020.05.016]

备注/Memo

备注/Memo:
收稿日期: 2020-04-28.
作者简介: 吕玥(1993—),女,博士生;殷勇高(联系人),男,博士,教授,博士生导师,y.yin@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51776036)、国家重点研发计划资助项目(2018YFC0705306).
引用本文: 吕玥,殷勇高.填料表面参数对LiCl溶液降膜润湿性的影响[J].东南大学学报(自然科学版),2020,50(5):889-895. DOI:10.3969/j.issn.1001-0505.2020.05.014.
更新日期/Last Update: 2020-09-20