[1]苏伟,刘倩,钟文琪,等.微型流化床中煤富氧燃烧特性[J].东南大学学报(自然科学版),2020,50(5):896-903.[doi:10.3969/j.issn.1001-0505.2020.05.015]
 Su Wei,Liu Qian,Zhong Wenqi,et al.Oxy-coal combustion characteristics in micro-fluidized bed reactor[J].Journal of Southeast University (Natural Science Edition),2020,50(5):896-903.[doi:10.3969/j.issn.1001-0505.2020.05.015]
点击复制

微型流化床中煤富氧燃烧特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第5期
页码:
896-903
栏目:
能源与动力工程
出版日期:
2020-09-20

文章信息/Info

Title:
Oxy-coal combustion characteristics in micro-fluidized bed reactor
作者:
苏伟刘倩钟文琪王晶振
东南大学能源热转换及其过程测控教育部重点实验室, 南京210096; 东南大学能源与环境学院, 南京210096
Author(s):
Su Wei Liu Qian Zhong Wenqi Wang Jingzhen
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
富氧燃烧 微型流化床 动力学 质谱
Keywords:
oxy-coal combustion micro-fluidized bed reaction analyzer kinetics mass spectrum
分类号:
TK16
DOI:
10.3969/j.issn.1001-0505.2020.05.015
摘要:
为了研究流化床锅炉中煤的富氧燃烧反应,将微型流化床反应分析仪和过程质谱仪(MFBRA-MS)联用,以烟煤和无烟煤标准煤样为对象,采用相对定量方法计算CO2浓度,研究了反应气氛、煤种等因素对煤粉在流化条件下快速燃烧反应动力学的影响.揭示了反应全过程中动力学参数的变化规律,并与热重条件下的实验结果进行对比,同时对主要气体产物的生成特性进行了跟踪和分析.结果表明,烟煤的活化能小于无烟煤,随着O2浓度的提高,煤富氧燃烧的活化能减小;相同氧浓度下,煤粉在O2/CO2气氛中燃烧活化能大于O2/Ar气氛;微型流化床中煤燃烧反应的活化能显著小于类似反应条件下热重分析获得的燃烧活化能.温度升高会缩短反应响应时间并使最大反应速率值增大,此时对应的转化率也增大.温度小于650 ℃不适宜煤粉燃烧,此时CO产量增加.O2浓度升高,CO2、NOx产量增加.相同条件下,煤粉在O2/CO2气氛中燃烧污染物产量少于O2/Ar气氛,这是由O2在不同气氛中扩散速率的差异所导致的.
Abstract:
To study the oxy-coal combustion reaction in a fluidized bed boiler, a micro-fluidized bed reactor and mass spectrum system(MFBRA-MS)was connected to study the standard coal samples of anthracite coal and bituminous coal. A relative quantitative method was used to calculate the concentration of CO2. The effects of reaction atmosphere, coal type on the rapid combustion reaction kinetics of coal particles under fluidized conditions and the formation characteristics of main gas products were tracked and analyzed. Changes in kinetic parameters during the entire process of reaction were found, the comparison was made between the thermogravimetric results and fluidized bed results. The results show the activation energy of bituminous coal is smaller than that of anthracite coal, with the increase of O2 concentration, the activation energy of coal oxy-fuel combustion decreases. On the same O2 concentration, the combustion activation energy of coal in O2/CO2 atmosphere is larger than that in O2/Ar atmosphere; the activation energy of oxy-coal combustion in MFBRA is significantly less than that obtained by thermogravimetric analysis under similar reaction conditions. The increase of the temperature is beneficial to shorten the response time of reaction and improve the maximum reaction rate, the corresponding conversion rate is bigger. Coal cannot combust well at 650 ℃ or lower, and the yields of CO increase. With the increase of O2 concentration, the yields of CO2 and NOx increase. Under similar condition, the yields of pollutants of coal in O2/CO2 is less than that of O2/Ar, it is due to the difference on diffusion rate of O2 in different atmospheres.

参考文献/References:

[1] World Coal Insitute(WCI).The coal resources: A comprehensive overview of coal[R].London,UK:WCI Publications,2009:29-31.
[2] Singh R I, Kumar R. Current status and experimental investigation of oxy-fired fluidized bed[J]. Renewable and Sustainable Energy Review, 2016, 61: 398-420. DOI: 10.1016/j.rser.2016.04.021.
[3] Mathekga H I, Oboirien B O, North B C. A review of oxy-fuel combustion in fluidized bed reactors[J]. International Journal of Energy Research, 2016, 40: 878-902. DOI:10.1002/er.3486.
[4] 梁化鑫. 煤粉在加压富氧条件下的燃烧特性研究[D]. 北京: 北京交通大学, 2015.
  Liang H X.Study on pressurized oxy-fuel combustion characteristics of pulverized coal[D]. Beijing: Beijing Jiaotong University, 2015.(in Chinese)
[5] Rubin E S, Mantripragada H, Marks A, et al. The outlook for improved carbon capture technology[J]. Progress in Energy and Combustion Science, 2012, 38(5): 630-671.DOI: 10.1016/j.pecs.2012.03.003.
[6] Niu S L, Lu C M, Han K H, et al. Thermogravimetric analysis of combustion characteristics and kinetic parameters of pulverized coals in oxy-fuel atmosphere[J]. Journal of Thermal Analysis and Calorimetry, 2009, 98(1): 267-274. DOI:10.1007/s10973-009-0133-1.
[7] 初伟, 周月桂, 许杨杨, 等. O2/CO2和O2/N2气氛下不同煤种的热解与燃烧试验研究[J]. 热力发电, 2012, 41(12): 33-38. DOI: 10.3969/j.issn.1002-3364.2012.12.033.
Chu W, Zhou Y G, Xü Y Y, et al. Pyrolysis and combustion characteristics of different rank coals in O2/CO2(N2)environments[J]. Thermal Power Generation, 2012, 41(12): 33-38. DOI:10.3969/j.issn.1002-3364.2012.12.033. (in Chinese)
[8] Liu H. Combustion of coal chars in O2 /CO2 and O2 /N2 Mixtures: a comparative study with non-isothermal thermogravimetric analyzer(TGA)tests [J]. Energy & Fuels, 2009, 23(5): 4278–4285. DOI:10.1021/ef9002928.
[9] Croiset E, Thambimuthu K V. NOxx and SO2 emissions from O2/CO2 recycle coal combustion[J]. Fuel, 2001, 80(14):2117-2121. DOI:10.1016/S0016-2361(00)00197-6.
[10] Tan Y W, Croiset E, Douglas M A, et al. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas[J]. Fuel, 2006, 85: 507-512. DOI:10.1016/j.fuel.2005.08.010.
[11] Duan Y Q, Duan L B, Hu H H, et al. Combustion and pollutant emission characteristics of coal in a pressurized fluidized bed under O2/CO2 atmosphere[J]. Journal of Southeast University(English Edition), 2015, 31(2): 188-193. DOI: 10.3969/j.issn.1003-7985.2015.02.005.
[12] 刘倩, 钟文琪, 苏伟, 等. 基于热重-质谱联用的煤粉富氧燃烧动力学及污染物生成特性研究[J]. 化工学报, 2018, 69(1): 523-530. DOI:10.11949/j.issn.0438-1157.20171038.
Liu Q, Zhong W Q, Su W, et al. Oxy-coal combustion kinetics and the formation characteristics of pollutants based on TG-MS analysis[J]. CIESC Journal, 2018, 69(1): 523-530. DOI:10.11949/j.issn.0438-1157.20171038. (in Chinese)
[13] 姚梅琴, 岳君容, 战金辉, 等. 内循环微型流化床流动特性[J]. 化工学报, 2017, 10: 3717-3724. DOI: 10.11949/j.issn.0438-1157.20170495.
Yao M Q, Yue J R, Zhan J H, et al. Hydrodynamics of internally circulating micro fluidized bed[J]. CIESC Journal, 2017, 10: 3717-3724. DOI:10.11949/j.issn.0438-1157.20170495. (in Chinese)
[14] Liu Y, Wang Y, Guo F Q, et al.Characterization of the gas releasing behaviors of catalytic pyrolysis of rice husk using potassium over a micro-fluidized bed reactor[J]. Energy Conversion and Management, 2017, 136: 395-403.
[15] Mao Y B, Dong L, Dong Y P, et al. Fast co-pyrolysis of biomass and lignite in a micro fluidized bed reactor analyzer[J]. Bioresource Technology, 2015, 181: 155-162. DOI:10.1016/j.biortech.2015.01.066.
[16] Wang F, Zeng X, Wang Y G, et al. Characterization of coal char gasification with steam in a micro-fluidized bed reaction analyzer[J]. Fuel Processing Technology, 2016, 141: 2-8. DOI:10.1016/j.fuproc.2015.04.025.
[17] 金涌, 祝京旭. 流态化工程原理[M]. 北京: 清华大学出版社, 2001: 19-22.
[18] 龙天渝, 蔡增基. 流体力学[M]. 3版. 北京: 中国建筑工业出版社, 2019: 69-76.
[19] 余剑, 朱剑虹, 岳君容, 等. 微型流化床反应动力学分析仪的研制与应用[J]. 化工学报, 2009, 60(10): 2669-2674.
  Yu J, Zhu J H, Yue J R, et al. Development and application of micro kinetic analyzer for fluidized bed gas-solid reactions[J]. CIESC Journal, 2009, 60(10): 2669-2674.(in Chinese)
[20] 汪正范. 色谱定性与定量[M]. 北京: 化学工业出版社, 2000: 127-133.
[21] 周强泰. 锅炉原理[M]. 3版. 北京: 中国电力出版社, 2013: 28-29.
[22] 张廷安, 豆志河. 宏观动力学研究方法[M]. 北京: 化学工业出版社, 2014: 7-12.
[23] 段伦博, 赵长遂, 李庆钊, 等. O2/ CO2 气氛下煤焦燃烧实验研究[J]. 燃料化学学报, 2009, 37(6): 654-658. DOI:10.3969/j.issn.0253-2409.2009.06.003.
Duan L B, Zhao C S, Li Q Z, et al. Experimental investigation on coal and char combustion in O2/ CO2 mixture[J]. Journal of Fuel Chemistry and Technology, 2009, 37(6): 654-658. DOI:10.3969/j.issn.0253-2409.2009.06.003. (in Chinese)
[24] de Diego L F, de Las Obras Loscertales M, Rufas F A, et al. Pollutant emissions in a bubbling fluidized bed combustor working in oxy-fuel operating conditions: Effect of flue gas recirculation[J]. Applied Energy, 2013, 102: 860-867. DOI:10.1016/j.apenergy.2012.08.053.
[25] Murphy J J, Shaddix C R. Combustion kinetics of coal chars in oxygen-enriched environments[J]. Combustion and Flame, 2006, 144(4): 710-729. DOI:10.1016/j.combustflame.2005.08.039.
[26] Roberts D G, Harris D J. Char gasification with O2, CO2 and H2O: Effects of pressure on intrinsic reaction kinetics[J]. Energy & Fuels, 2000, 14: 483-489. DOI:10.1021/ef9901894.
[27] Czakiert T, Bis Z, Muskala W, et al. Fuel conversion from oxy-fuel combustion in a circulating fluidized bed[J]. Fuel Processing Technology, 2006, 87(6): 531-538. DOI:10.1016/j.fuproc.2005.12.003.
[28] Wall T, Liu Y H, Spero C, et al. An overview on oxy-fuel coal combustion-State of the art research and technology development[J]. Chemical Engineering Research and Design, 2009, 87(8): 1003-1016. DOI:10.1016/j.cherd.2009.02.005.

相似文献/References:

[1]魏莉,钟文琪,邵应娟.煤流化床加压富氧燃烧过程的动态特性[J].东南大学学报(自然科学版),2020,50(2):358.[doi:10.3969/j.issn.1001-0505.2020.02.021]
 Wei Li,Zhong Wenqi,Shao Yingjuan.Dynamic characteristics of pressurized oxy-fuel combustion in fluidized bed[J].Journal of Southeast University (Natural Science Edition),2020,50(5):358.[doi:10.3969/j.issn.1001-0505.2020.02.021]

备注/Memo

备注/Memo:
收稿日期: 2020-04-20.
作者简介: 苏伟(1994—),男,硕士生;钟文琪(联系人),男,博士,教授,博士生导师,wqzhong@seu.edu.cn.
基金项目: 国家自然科学基金重点资助项目(51736002)、国家重点研发计划资助项目(2016YFB0600802).
引用本文: 苏伟,刘倩,钟文琪,等.微型流化床中煤富氧燃烧特性[J].东南大学学报(自然科学版),2020,50(5):896-903. DOI:10.3969/j.issn.1001-0505.2020.05.015.
更新日期/Last Update: 2020-09-20