[1]栾阳,杨阳,戴国亮,等.非接触桩箱复合基础竖向承载特性分析[J].东南大学学报(自然科学版),2020,50(6):999-1005.[doi:10.3969/j.issn.1001-0505.2020.06.002]
 Luan Yang,Yang Yang,et al.Analysis on vertical bearing characteristics of unconnected caisson-pile composite foundation[J].Journal of Southeast University (Natural Science Edition),2020,50(6):999-1005.[doi:10.3969/j.issn.1001-0505.2020.06.002]
点击复制

非接触桩箱复合基础竖向承载特性分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第6期
页码:
999-1005
栏目:
土木工程
出版日期:
2020-11-20

文章信息/Info

Title:
Analysis on vertical bearing characteristics of unconnected caisson-pile composite foundation
作者:
栾阳12杨阳12戴国亮12龚维明1 2贾其军3
1东南大学土木工程学院, 南京 210096; 2东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 210096; 3中国路桥工程有限责任公司, 北京 100011
Author(s):
Luan Yang1 2 Yang Yang12 Dai Guoliang12 Gong Weiming12 Jia Qijun3
1School of Civil Engineering, Southeast University, Nanjing 210096, China
2Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing 210096, China
3China Road and Bridge Corporation, Beijing 100011, China
关键词:
非接触桩箱复合基础 竖向承载力 沉降 离散-有限差分耦合
Keywords:
unconnected caisson-pile composite foundation vertical bearing capacity settlement coupling of discrete element and finite element method
分类号:
TU473
DOI:
10.3969/j.issn.1001-0505.2020.06.002
摘要:
为研究非接触桩箱复合基础的竖向承载性能,基于室内模型试验,分析了非接触桩箱复合基础的承载力特性及沉降规律.采用离散-有限差分多尺度耦合分析方法建模,将模型计算结果与室内试验结果进行对比,从宏、细观分析非接触桩箱复合基础的力学行为特性.结果表明,非接触桩箱复合基础荷载位移曲线为缓降形,下部地基土变形为中间大、两边小.垫层越厚,沉箱沉降越大,但垫层对桩、土变形协调能力越好.沉箱下部垫层颗粒大都向下运动,靠近沉箱边缘的颗粒水平运动明显,垫层颗粒出现明显水平运动的起始点与地基表层土出现沉降的拐点相一致.
Abstract:
To study the vertical bearing behaviors of unconnected caisson-pile foundation, the bearing capacity and the settlement feature were analyzed based on a series of indoor model tests. The simulation model was established by a multi-scale method with coupling of discrete element and finite element method. Compared the simulation results with the indoor model test results, the mechanical behavior features of the unconnected caisson-pile foundation were analyzed from macro and micro view. The results show that the loading-displacement curve of the unconnected caisson-pile foundation changes slowly. The vertical displacement of soil on ground surface is large in the middle and small on both sides. The thicker the cushion is, the larger the caisson settlement is, but the compatible deformation capability of the pile and soil is better. The cushion particles under the caisson mainly move downward, and those nearing the caisson edge obviously move horizontally. The position where particle horizontal movement starts obviously is consistent with that of the inflection point of the ground surface soil settlement.

参考文献/References:

[1] 范立础, 王君杰. 桥梁抗震设计规范的现状与发展趋势[J]. 地震工程与工程振动, 2001, 21(2): 70-77. DOI: 10.3969/j.issn.1000-1301.2001.02.013.
Fan L C, Wang J J. Design code for earthquake-resistance of bridges: Current situation and trend[J]. Earthquake Engineering and Engineering Vibration, 2001, 21(2): 70-77. DOI:10.3969/j.issn.1000-1301.2001.02.013. (in Chinese)
[2] Combault J, Pecker A, Teyssandier J P, et al. Rion-Antirion Bridge, Greece—concept, design, and construction[J]. Structural Engineering International, 2005, 15(1): 22. DOI:10.2749/101686605777963387.
[3] 董学武, 周世忠. 希腊里翁-安蒂里翁大桥的设计与施工[J]. 世界桥梁, 2004, 32(4): 1-4. DOI:10.3969/j.issn.1671-7767.2004.04.001.
Dong X W, Zhou S Z. Design and construction of Rion-Antirion Bridge in Greece[J]. World Bridges, 2004, 32(4): 1-4. DOI:10.3969/j.issn.1671-7767.2004.04.001. (in Chinese)
[4] Lyngs J H, Kasper T, Bertelsen K S. Modelling of soil-structure interaction for seismic analyses of the Izmit Bay Bridge[C]//Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris, France, 2013:763-768.
[5] 刘宗华. 土耳其Izmit海湾大桥主塔基础设计与施工构思[J]. 施工技术, 2012, 41(9): 11-13, 20.
  Liu Z H. The conception of main tower foundation design and construction for Izmit Bay Bridge in Turkey[J]. Construction Technology, 2012, 41(9): 11-13, 20.(in Chinese)
[6] Pfauth T, Poling J. Strain measurement in a specimen subjected to out-of-plane movement: Using an open-source digital image correlation-based tool[J]. The Journal of Purdue Undergraduate Research, 2017, 7(1): 7. DOI:10.5703/1288284316396.
[7] Giannakou A, Tasiopoulou P, Chacko J, et al. Assessment of lateral spreading demands on the 1915 Çanakkale Bridge tower foundation[EB/OL].(2019-06)[2019-10-15]. https://www.researchgate.net/publication/335890100_Assessment_of_lateral_spreading_demands_on_the_1915_anakkale_Bridge_tower_foundation.
[8] Biesiadecki G L, Dobry R, Leventis G E, et al. Rion-Antirion Bridge foundations: A blend of design and construction innovation[EB/OL].(2004-04-13)[2019-10-15]. https://scholarsmine.mst.edu/icchge/5icchge/session00g/14/.
[9] Anastasopoulos I, Gazetas G, Loli M, et al. Soil failure can be used for seismic protection of structures[J]. Bulletin of Earthquake Engineering, 2010, 8(2): 309-326. DOI:10.1007/s10518-009-9145-2.
[10] Dobry R, Pecker A, Mavroeidis G P, et al. Damping/global energy balance in FE model of bridge foundation lateral response[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(6): 483-495. DOI:10.1016/S0267-7261(03)00050-2.
[11] Yang D, Dobry R, Peck R B. Foundation-Soil-Inclusion Interaction Modelling for Rion-Antirion Bridge Seismic Analysis[EB/OL].(2001-03-30)[2019-10-15]. https://scholarsmine.mst.edu/icrageesd/04icrageesd/session06/18/?utm_source=scholarsmine.mst.edu%2Ficrageesd%2F04icrageesd%2Fsession06%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages.
[12] 吕伟华, 缪林昌. 刚性桩复合地基桩土应力比计算方法[J]. 东南大学学报(自然科学版), 2013, 43(3): 624-628. DOI:10.3969/j.issn.100-0505.2013.03.032.
Lü W H, Miao L C. Calculation method of pile-soil stress ratio of rigid pile composite foundation[J]. Journal of Southeast University(Natural Science Edition), 2013, 43(3): 624-628. DOI:10.3969/j.issn.100-0505.2013.03.032. (in Chinese)
[13] 陶景晖, 梁书亭, 龚维明, 等. 高层建筑刚性桩复合地基承载受力性状研究[J]. 东南大学学报(自然科学版), 2009, 39(S2): 238-245.
  Tao J H, Liang S T, Gong W M, et al. Study on bearing behavior of composite foundation with rigid pile for high-rise buildings[J]. Journal of Southeast University(Natural Science Edition), 2009, 39(S2): 238-245.(in Chinese)
[14] 叶成银, 龚维明, 周马生, 等. 沉桩过程三维离散-连续耦合数值模拟分析研究[J]. 公路, 2019(4):61-67.
  Ye C Y, Gong W M, Zhou M S, et al. Numerical simulation analysis of pile driving based on 3D discrete-continuum coupling method[J]. Highway, 2019(4):61-67.(in Chinese)

相似文献/References:

[1]刘之春,蒋永生,龚维明.大直径扩底桩承载力的沉降变形控制设计法初探[J].东南大学学报(自然科学版),2001,31(4):49.[doi:10.3969/j.issn.1001-0505.2001.04.012]
 Liu Zhichun,Jiang Yongsheng,Gong Weiming.Discussion of the Design Method of Large Diameter Belled Pile’s Bearing Capacity According to Settlement[J].Journal of Southeast University (Natural Science Edition),2001,31(6):49.[doi:10.3969/j.issn.1001-0505.2001.04.012]

备注/Memo

备注/Memo:
收稿日期: 2020-06-30.
作者简介: 栾阳(1993—),女,博士生;戴国亮(联系人),男,博士,教授,博士生导师, daigl@seu.edu.cn.
基金项目: 国家重点研发计划重点专项资助项目(2017YFC0703408)、国家自然科学基金资助项目(51678145,51878160)、中国交建重点研发资助项目(2016-zjjt-24).
引用本文: 栾阳,杨阳,戴国亮,等.非接触桩箱复合基础竖向承载特性分析[J].东南大学学报(自然科学版),2020,50(6):999-1005. DOI:10.3969/j.issn.1001-0505.2020.06.002.
更新日期/Last Update: 2020-11-20