[1]常洪雷,陈繁育,曲明月,等.生石灰和膨胀剂对砂浆自修复性能的影响[J].东南大学学报(自然科学版),2020,50(6):1014-1022.[doi:10.3969/j.issn.1001-0505.2020.06.004]
 Chang Honglei,Chen Fanyu,Qu Mingyue,et al.Effects of quicklime and expansive agent on self-healing performance of mortar[J].Journal of Southeast University (Natural Science Edition),2020,50(6):1014-1022.[doi:10.3969/j.issn.1001-0505.2020.06.004]
点击复制

生石灰和膨胀剂对砂浆自修复性能的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第6期
页码:
1014-1022
栏目:
材料科学与工程
出版日期:
2020-11-20

文章信息/Info

Title:
Effects of quicklime and expansive agent on self-healing performance of mortar
作者:
常洪雷1陈繁育2曲明月2程梦莹2王剑宏1刘健1
1 山东大学齐鲁交通学院, 济南 250002; 2 山东大学土建与水利学院, 济南 250061
Author(s):
Chang Honglei1 Chen Fanyu2 Qu Mingyue2 Cheng Mengying2 Wang Jianhong1 Liu Jian1
1 School of Qilu Transportation, Shandong University, Jinan 250002, China
2 School of Civil Engineering, Shandong University, Jinan 250061, China
关键词:
自修复 生石灰 膨胀剂 修复程度 透水性
Keywords:
self-healing quicklime expansive agent healing degree water permeability
分类号:
TU528.1
DOI:
10.3969/j.issn.1001-0505.2020.06.004
摘要:
为研究生石灰和硫铝酸钙类膨胀剂影响基体自修复能力的作用特点,通过测试裂缝宽度和透水性评估了3种砂浆试件的修复效果,并利用扫描电镜及能谱分析研究裂缝修复物质的微观形态和元素组成. 结果表明:随着修复时间的增加,裂缝的修复程度逐渐增大,而试件透水性逐渐减小,且两者具有较好的相关关系;初始裂缝宽度越小,裂缝的自修复程度越高,材料基体的透水性降低越快;生石灰对龄期0~28 d内基体的自修复能力提升明显,但对28 d后的提升作用有限;膨胀剂对龄期7~28 d内基体的自修复能力有提升,但对龄期7 d前及28 d后基体的自修复能力却具有一定的负面作用;内掺生石灰试件的修复物质主要为碳酸钙,而内掺膨胀剂试件的修复产物包括碳酸钙、钙矾石、水化硅酸钙及水化硅铝酸钙.
Abstract:
To explore the effects of quicklime and calcium sulphoaluminate expansive agents on the self repairing ability of matrix, the repair effects of three kinds of mortar specimens were evaluated by testing the crack width and water permeability, and the micro-morphology and the element composition of crack repairing materials were studied by scanning electron microscope and energy-dispersive X-ray spectroscopy(SEM-EDS). The results show that, with the increase of healing time, the healing degree of the crack increases gradually, while the water permeability of the specimen decreases gradually, and they have a good correlation. Moreover, the smaller the initial crack width is, the higher the self-healing degree of the crack is, and the faster the water permeability of the material matrix decreases. Besides, the quicklime significantly improves the self-healing ability of matrix from the age of 0-28 d, but has a limited effect on that of the matrix after the age of 28 d; while expansive agent had a certain improvement on the self-healing ability of matrix from the age of 7-28 d, but had a certain negative effect on that of the matrix before the age of 7 d and after the age of 28 d. The calcium carbonate is the main repair material for the specimens with quicklime, while calcium carbonate, ettringite, calcium silicate hydrate, and calcium silicate aluminate hydrate are the repair products of the specimens with expansive agent.

参考文献/References:

[1] 张鹏, 冯竟竟, 陈伟, 等. 混凝土损伤自修复技术的研究与进展[J]. 材料导报, 2018, 32(19): 3375-3386.
  Zhang P,Feng J J, Chen W, et al. Self-healing performance of concrete: A technological review[J]. Materials Review, 2018, 32(19): 3375-3386.(in Chinese)
[2] White S R, Sottos N R, Geubelle P H, et al. Autonomic healing of polymer composites[J]. Nature, 2001, 409(6822): 794. DOI:10.1038/35057232.
[3] van Tittelboom K, de Belie N, de Muynck W, et al. Use of bacteria to repair cracks in concrete[J]. Cement and Concrete Research, 2010, 40(1): 157-166. DOI:10.1016/j.cemconres.2009.08.025.
[4] Yang Z X, Hollar J, He X D, et al. A self-healing cementitious composite using oil core/silica gel shell microcapsules[J]. Cement and Concrete Composites, 2011, 33(4): 506-512. DOI:10.1016/j.cemconcomp.2011.01.010.
[5] Wang J Y, Soens H, Verstraete W, et al. Self-healing concrete by use of microencapsulated bacterial spores[J]. Cement and Concrete Research, 2014, 56: 139-152. DOI:10.1016/j.cemconres.2013.11.009.
[6] Qureshi T, Kanellopoulos A, Al-Tabbaa A. Autogenous self-healing of cement with expansive minerals-Ⅰ: Impact in early age crack healing[J]. Construction and Building Materials, 2018, 192: 768-784. DOI:10.1016/j.conbuildmat.2018.10.143.
[7] Qureshi T, Kanellopoulos A, Al-Tabbaa A. Autogenous self-healing of cement with expansive minerals-Ⅱ: Impact of age and the role of optimised expansive minerals in healing performance[J]. Construction and Building Materials, 2019, 194: 266-275. DOI:10.1016/j.conbuildmat.2018.11.027.
[8] Zhou Z H, Li Z Q, Xu D Y, et al. Influence of slag and fly ash on the self-healing ability of concrete[J]. Advanced Materials Research, 2011, 306/307: 1020-1023. DOI:10.4028/www.scientific.net/amr.306-307.1020.
[9] Qian S, Zhou J, de Rooij M R, et al. Self-healing behavior of strain hardening cementitious composites incorporating local waste materials[J]. Cement and Concrete Composites, 2009, 31(9): 613-621. DOI:10.1016/j.cemconcomp.2009.03.003.
[10] Jiang Z W, Li W T, Yuan Z C. Influence of mineral additives and environmental conditions on the self-healing capabilities of cementitious materials[J]. Cement and Concrete Composites, 2015, 57: 116-127. DOI:10.1016/j.cemconcomp.2014.11.014.
[11] Huang H L, Ye G, Damidot D. Effect of blast furnace slag on self-healing of microcracks in cementitious materials[J]. Cement and Concrete Research, 2014, 60: 68-82. DOI:10.1016/j.cemconres.2014.03.010.
[12] Wang X F, Fang C, Li D W, et al. A self-healing cementitious composite with mineral admixtures and built-in carbonate[J]. Cement and Concrete Composites, 2018, 92: 216-229. DOI:10.1016/j.cemconcomp.2018.05.013.
[13] Sisomphon K, Copuroglu O, Koenders E A B. Self-healing of surface cracks in mortars with expansive additive and crystalline additive[J]. Cement and Concrete Composites, 2012, 34(4): 566-574. DOI:10.1016/j.cemconcomp.2012.01.005.
[14] de Nardi C, Cecchi A, Ferrara L, et al. Effect of age and level of damage on the autogenous healing of lime mortars[J]. Composites Part B: Engineering, 2017, 124: 144-157. DOI:10.1016/j.compositesb.2017.05.041.
[15] Qian C X, Chen H C, Ren L F, et al. Self-healing of early age cracks in cement-based materials by mineralization of carbonic anhydrase microorganism[J]. Frontiers in Microbiology, 2015, 6: 1225. DOI:10.3389/fmicb.2015.01225.
[16] 王立成, 武少赟. 混凝土劈拉开裂和裂缝自愈合机理[J]. 水利学报, 2019, 50(7): 787-797. DOI:10.13243/j.cnki.slxb.20190387.
Wang L C, Wu S Y. Self-healing mechanism of concrete cracks induced by splitting tensile loading[J]. Journal of Hydraulic Engineering, 2019, 50(7): 787-797. DOI:10.13243/j.cnki.slxb.20190387. (in Chinese)
[17] Huang H L, Ye G, Qian C X, et al. Self-healing in cementitious materials: Materials, methods and service conditions[J]. Materials & Design, 2016, 92: 499-511. DOI:10.1016/j.matdes.2015.12.091.
[18] 水中和, 魏小胜, 王栋民. 现代混凝土科学技术[M]. 北京: 科学出版社, 2015:108-140.
[19] Qiu J S, Tan H S, Yang E H. Coupled effects of crack width, slag content, and conditioning alkalinity on autogenous healing of engineered cementitious composites[J]. Cement and Concrete Composites, 2016, 73: 203-212. DOI:10.1016/j.cemconcomp.2016.07.013.
[20] Qian S Z, Zhou J, Schlangen E. Influence of curing condition and precracking time on the self-healing behavior of engineered cementitious composites[J]. Cement and Concrete Composites, 2010, 32(9): 686-693. DOI:10.1016/j.cemconcomp.2010.07.015.
[21] Ahn T, Kishi T. Crack self-healing behavior of cementitious composites incorporating various mineral admixtures[J]. Journal of Advanced Concrete Technology, 2010, 8(2): 171-186. DOI:10.3151/jact.8.171.

备注/Memo

备注/Memo:
收稿日期: 2020-05-24.
作者简介: 常洪雷(1988—),男,博士,助理研究员,hlchang@sdu.edu.cn.
基金项目: 国家自然科学基金资助项目(51908327)、山东省自然科学基金资助项目(ZR2019QEE017)、山东大学基本科研业务费专项资金资助项目(31560078614117).
引用本文: 常洪雷,陈繁育,曲明月,等.生石灰和膨胀剂对砂浆自修复性能的影响[J].东南大学学报(自然科学版),2020,50(6):1014-1022. DOI:10.3969/j.issn.1001-0505.2020.06.004.
更新日期/Last Update: 2020-11-20