[1]王艺斐,苏春,谢明江.基于二元逆高斯过程的腐蚀输油管道剩余寿命预测[J].东南大学学报(自然科学版),2020,50(6):1038-1044.[doi:10.3969/j.issn.1001-0505.2020.06.007]
 Wang Yifei,Su Chun,Xie Mingjiang.Remaining useful life prediction of corroded oil pipelines based on binary inverse Gaussian process[J].Journal of Southeast University (Natural Science Edition),2020,50(6):1038-1044.[doi:10.3969/j.issn.1001-0505.2020.06.007]
点击复制

基于二元逆高斯过程的腐蚀输油管道剩余寿命预测()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第6期
页码:
1038-1044
栏目:
能源与动力工程
出版日期:
2020-11-20

文章信息/Info

Title:
Remaining useful life prediction of corroded oil pipelines based on binary inverse Gaussian process
作者:
王艺斐苏春谢明江
东南大学机械工程学院, 南京 211189
Author(s):
Wang Yifei Su Chun Xie Mingjiang
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
关键词:
输油管道 二元逆高斯(IG)过程 Copula函数 剩余寿命(RUL)预测
Keywords:
oil pipeline binary inverse Gaussian(IG)process Copula function remaining useful life(RUL)prediction
分类号:
TE98
DOI:
10.3969/j.issn.1001-0505.2020.06.007
摘要:
考虑到输油管道随着服役时间的增加会出现不可逆转的性能退化,影响管道运行的安全性和可靠性,提出一种基于二元逆高斯(IG)过程的腐蚀输油管道剩余寿命(RUL)预测方法.首先,采用二元IG过程分别建立管道腐蚀深度和剩余强度2种性能退化量模型,得到基于管道腐蚀深度和剩余强度的RUL边缘概率密度函数;采用Copula函数建立双性能指标的管道RUL联合概率密度函数,采用期望值最大化(EM)算法估计模型参数,完成管道RUL预测.最后以某输油管道实际的腐蚀退化数据为例,验证所提出方法的可行性和有效性.结果表明:所提出方法的最大误差为10.7%,最小误差为2.2%,能够有效地预测管道RUL;采用IG过程预测管道寿命的误差相对较小,具有较高的预测精度.
Abstract:
In view of the irreversible performance degradation occurred with the increase of service time, affecting the safety and the reliability of the pipeline, a remaining useful life(RUL)prediction method for corroded oil pipelines based on binary inverse Gaussian(IG)process was proposed. First, two degradation models for the pipeline corrosion depth and the residual strength were established with the binary IG process, respectively, and the edge probability density function of the RUL of pipelines was obtained based on the corrosion depth and the residual strength. Then, the joint probability density function of the RUL of pipelines with double performance indexes was established by the Copula function, and the model parameters were estimated by the expectation maximization(EM)algorithm to complete the pipeline RUL prediction. Finally, taking the actual corroded degradation data of an oil pipeline as an example, the feasibility and the effectiveness of the proposed method were verified. The results show that the method has the maximum error of 10.7% and the minimum error of 2.2%, thus effectively predicting the RUL of pipelines. Moreover, the error of the pipeline life prediction with IG process is relatively small, having high prediction accuracy.

参考文献/References:

[1] Li S X, Yu S R, Zeng H L, et al. Predicting corrosion remaining life of underground pipelines with a mechanically-based probabilistic model[J].Journal of Petroleum Science and Engineering, 2009, 65(3/4): 162-166. DOI:10.1016/j.petrol.2008.12.023.
[2] Ossai C I, Boswell B, Davies I J. Pipeline failures in corrosive environments: A conceptual analysis of trends and effects[J].Engineering Failure Analysis, 2015, 53: 36-58. DOI:10.1016/j.engfailanal.2015.03.004.
[3] Mosallam A, Medjaher K, Zerhouni N. Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction[J].Journal of Intelligent Manufacturing, 2016, 27(5): 1037-1048. DOI:10.1007/s10845-014-0933-4.
[4] Gong C Q, Zhou W X. First-order reliability method-based system reliability analyses of corroding pipelines considering multiple defects and failure modes[J].Structure and Infrastructure Engineering, 2017, 13(11): 1451-1461. DOI:10.1080/15732479.2017.1285330.
[5] Bouledroua O, Zelmati D, Hassani M. Inspections, statistical and reliability assessment study of corroded pipeline[J].Engineering Failure Analysis, 2019, 100: 1-10. DOI:10.1016/j.engfailanal.2019.02.012.
[6] Arzaghi E, Abbassi R, Garaniya V, et al. Developing a dynamic model for pitting and corrosion-fatigue damage of subsea pipelines[J].Ocean Engineering, 2018, 150: 391-396. DOI:10.1016/j.oceaneng.2017.12.014.
[7] 张新生, 李亚云, 王小完. 基于逆高斯过程的腐蚀油气管道维修策略[J]. 石油学报, 2017, 38(3): 356-362. DOI:10.7623/syxb201703013.
Zhang X S, Li Y Y, Wang X W. Maintenance strategy of corroded oil-gas pipeline based on inverse Gaussian process[J]. Acta Petrolei Sinica, 2017, 38(3): 356-362. DOI:10.7623/syxb201703013. (in Chinese)
[8] Bazán F A V, Beck A T. Stochastic process corrosion growth models for pipeline reliability[J].Corrosion Science, 2013, 74: 50-58. DOI:10.1016/j.corsci.2013.04.011.
[9] Wang H, Yajima A, Castaneda H. A stochastic defect growth model for reliability assessment of corroded underground pipelines[J].Process Safety and Environmental Protection, 2019, 123: 179-189. DOI:10.1016/j.psep.2019.01.005.
[10] Ossai C I, Boswell B, Davies I. Markov chain modelling for time evolution of internal pitting corrosion distribution of oil and gas pipelines[J].Engineering Failure Analysis, 2016, 60: 209-228. DOI:10.1016/j.engfailanal.2015.11.052.
[11] Amaya-Gómez R, Riascos-Ochoa J, Muñoz F, et al. Modeling of pipeline corrosion degradation mechanism with a Lévy Process based on ILI(In-Line)inspections[J].International Journal of Pressure Vessels and Piping, 2019, 172: 261-271. DOI:10.1016/j.ijpvp.2019.03.001.
[12] Zhang S W, Zhou W X. Bayesian dynamic linear model for growth of corrosion defects on energy pipelines[J].Reliability Engineering & System Safety, 2014, 128: 24-31. DOI:10.1016/j.ress.2014.04.001.
[13] Zhang P, Su L B, Qin G J, et al. Failure probability of corroded pipeline considering the correlation of random variables[J].Engineering Failure Analysis, 2019, 99: 34-45. DOI:10.1016/j.engfailanal.2019.02.002.
[14] Zhou W, Xiang W, Hong H P. Sensitivity of system reliability of corroding pipelines to modeling of stochastic growth of corrosion defects[J].Reliability Engineering & System Safety, 2017, 167: 428-438. DOI:10.1016/j.ress.2017.06.025.
[15] 金晓航, 李建华, 孙毅. 基于二元维纳过程的轴承剩余寿命预测[J]. 仪器仪表学报, 2018, 39(6): 89-95. DOI:10.19650/j.cnki.cjsi.J1803186.
Jin X H, Li J H, Sun Y. Bearing remaining useful life prediction based on two-dimensional wiener process[J]. Chinese Journal of Scientific Instrument, 2018, 39(6): 89-95. DOI:10.19650/j.cnki.cjsi.J1803186. (in Chinese)
[16] Ye Z S, Chen N. The inverse Gaussian process as a degradation model[J].Technometrics, 2014, 56(3): 302-311. DOI:10.1080/00401706.2013.830074.
[17] Cherubini U, Luciano E, Vecchiato W. Copula methods in finance[M]. Oxford, UK: John Wiley & Sons Ltd, 2004:49-51. DOI:10.1002/9781118673331.
[18] Nelsen R B.An introduction to Copulas[M]. New York, USA: Springer Science & Business Media, Inc., 2007:17-24. DOI: 10.1007/0-387-28678-0.
[19] Wang Z Q, Hu C H, Si X S, et al. Remaining useful life prediction of degrading systems subjected to imperfect maintenance: Application to draught fans[J].Mechanical Systems and Signal Processing, 2018, 100: 802-813. DOI:10.1016/j.ymssp.2017.08.016.
[20] Xie M J, Tian Z G. Risk-based pipeline re-assessment optimization considering corrosion defects[J].Sustainable Cities and Society, 2018, 38: 746-757. DOI:10.1016/j.scs.2018.01.021.
[21] Ebenuwa A U, Tee K F. Reliability estimation of buried steel pipes subjected to seismic effect[J].Transportation Geotechnics, 2019, 20: 100242. DOI:10.1016/j.trgeo.2019.100242.
[22] Rodriguez J C. Measuring financial contagion: A Copula approach[J].Journal of Empirical Finance, 2007, 14(3): 401-423. DOI:10.1016/j.jempfin.2006.07.002.
[23] Pan D H, Liu J B, Cao J D. Remaining useful life estimation using an inverse Gaussian degradation model[J].Neurocomputing, 2016, 185: 64-72. DOI:10.1016/j.neucom.2015.12.041.
[24] Liu M Z, Yang J X, Cao Y P, et al. A new method for arrival time determination of impact signal based on HHT and AIC[J].Mechanical Systems and Signal Processing, 2017, 86: 177-187. DOI:10.1016/j.ymssp.2016.10.003.
[25] McLachlan G J, Krishnan T.The EM algorithm and extensions[M]. 2nd edition. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008:18-22. DOI:10.1002/9780470191613.
[26] Shuai Y, Shuai J, Zhang X. Experimental and numerical investigation of the strain response of a dented API 5L X52 pipeline subjected to continuously increasing internal pressure[J].Journal of Natural Gas Science and Engineering, 2018, 56: 81-92. DOI:10.1016/j.jngse.2018.05.037.

备注/Memo

备注/Memo:
收稿日期: 2020-05-01.
作者简介: 王艺斐(1993—),男,博士生;苏春(联系人),男,博士,教授,博士生导师,suchun@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(71671035, 72001039).
引用本文: 王艺斐,苏春,谢明江.基于二元逆高斯过程的腐蚀输油管道剩余寿命预测[J].东南大学学报(自然科学版),2020,50(6):1038-1044. DOI:10.3969/j.issn.1001-0505.2020.06.007.
更新日期/Last Update: 2020-11-20