参考文献/References:
[1] Li S X, Yu S R, Zeng H L, et al. Predicting corrosion remaining life of underground pipelines with a mechanically-based probabilistic model[J].Journal of Petroleum Science and Engineering, 2009, 65(3/4): 162-166. DOI:10.1016/j.petrol.2008.12.023.
[2] Ossai C I, Boswell B, Davies I J. Pipeline failures in corrosive environments: A conceptual analysis of trends and effects[J].Engineering Failure Analysis, 2015, 53: 36-58. DOI:10.1016/j.engfailanal.2015.03.004.
[3] Mosallam A, Medjaher K, Zerhouni N. Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction[J].Journal of Intelligent Manufacturing, 2016, 27(5): 1037-1048. DOI:10.1007/s10845-014-0933-4.
[4] Gong C Q, Zhou W X. First-order reliability method-based system reliability analyses of corroding pipelines considering multiple defects and failure modes[J].Structure and Infrastructure Engineering, 2017, 13(11): 1451-1461. DOI:10.1080/15732479.2017.1285330.
[5] Bouledroua O, Zelmati D, Hassani M. Inspections, statistical and reliability assessment study of corroded pipeline[J].Engineering Failure Analysis, 2019, 100: 1-10. DOI:10.1016/j.engfailanal.2019.02.012.
[6] Arzaghi E, Abbassi R, Garaniya V, et al. Developing a dynamic model for pitting and corrosion-fatigue damage of subsea pipelines[J].Ocean Engineering, 2018, 150: 391-396. DOI:10.1016/j.oceaneng.2017.12.014.
[7] 张新生, 李亚云, 王小完. 基于逆高斯过程的腐蚀油气管道维修策略[J]. 石油学报, 2017, 38(3): 356-362. DOI:10.7623/syxb201703013.
Zhang X S, Li Y Y, Wang X W. Maintenance strategy of corroded oil-gas pipeline based on inverse Gaussian process[J]. Acta Petrolei Sinica, 2017, 38(3): 356-362. DOI:10.7623/syxb201703013. (in Chinese)
[8] Bazán F A V, Beck A T. Stochastic process corrosion growth models for pipeline reliability[J].Corrosion Science, 2013, 74: 50-58. DOI:10.1016/j.corsci.2013.04.011.
[9] Wang H, Yajima A, Castaneda H. A stochastic defect growth model for reliability assessment of corroded underground pipelines[J].Process Safety and Environmental Protection, 2019, 123: 179-189. DOI:10.1016/j.psep.2019.01.005.
[10] Ossai C I, Boswell B, Davies I. Markov chain modelling for time evolution of internal pitting corrosion distribution of oil and gas pipelines[J].Engineering Failure Analysis, 2016, 60: 209-228. DOI:10.1016/j.engfailanal.2015.11.052.
[11] Amaya-Gómez R, Riascos-Ochoa J, Muñoz F, et al. Modeling of pipeline corrosion degradation mechanism with a Lévy Process based on ILI(In-Line)inspections[J].International Journal of Pressure Vessels and Piping, 2019, 172: 261-271. DOI:10.1016/j.ijpvp.2019.03.001.
[12] Zhang S W, Zhou W X. Bayesian dynamic linear model for growth of corrosion defects on energy pipelines[J].Reliability Engineering & System Safety, 2014, 128: 24-31. DOI:10.1016/j.ress.2014.04.001.
[13] Zhang P, Su L B, Qin G J, et al. Failure probability of corroded pipeline considering the correlation of random variables[J].Engineering Failure Analysis, 2019, 99: 34-45. DOI:10.1016/j.engfailanal.2019.02.002.
[14] Zhou W, Xiang W, Hong H P. Sensitivity of system reliability of corroding pipelines to modeling of stochastic growth of corrosion defects[J].Reliability Engineering & System Safety, 2017, 167: 428-438. DOI:10.1016/j.ress.2017.06.025.
[15] 金晓航, 李建华, 孙毅. 基于二元维纳过程的轴承剩余寿命预测[J]. 仪器仪表学报, 2018, 39(6): 89-95. DOI:10.19650/j.cnki.cjsi.J1803186.
Jin X H, Li J H, Sun Y. Bearing remaining useful life prediction based on two-dimensional wiener process[J]. Chinese Journal of Scientific Instrument, 2018, 39(6): 89-95. DOI:10.19650/j.cnki.cjsi.J1803186. (in Chinese)
[16] Ye Z S, Chen N. The inverse Gaussian process as a degradation model[J].Technometrics, 2014, 56(3): 302-311. DOI:10.1080/00401706.2013.830074.
[17] Cherubini U, Luciano E, Vecchiato W. Copula methods in finance[M]. Oxford, UK: John Wiley & Sons Ltd, 2004:49-51. DOI:10.1002/9781118673331.
[18] Nelsen R B.An introduction to Copulas[M]. New York, USA: Springer Science & Business Media, Inc., 2007:17-24. DOI: 10.1007/0-387-28678-0.
[19] Wang Z Q, Hu C H, Si X S, et al. Remaining useful life prediction of degrading systems subjected to imperfect maintenance: Application to draught fans[J].Mechanical Systems and Signal Processing, 2018, 100: 802-813. DOI:10.1016/j.ymssp.2017.08.016.
[20] Xie M J, Tian Z G. Risk-based pipeline re-assessment optimization considering corrosion defects[J].Sustainable Cities and Society, 2018, 38: 746-757. DOI:10.1016/j.scs.2018.01.021.
[21] Ebenuwa A U, Tee K F. Reliability estimation of buried steel pipes subjected to seismic effect[J].Transportation Geotechnics, 2019, 20: 100242. DOI:10.1016/j.trgeo.2019.100242.
[22] Rodriguez J C. Measuring financial contagion: A Copula approach[J].Journal of Empirical Finance, 2007, 14(3): 401-423. DOI:10.1016/j.jempfin.2006.07.002.
[23] Pan D H, Liu J B, Cao J D. Remaining useful life estimation using an inverse Gaussian degradation model[J].Neurocomputing, 2016, 185: 64-72. DOI:10.1016/j.neucom.2015.12.041.
[24] Liu M Z, Yang J X, Cao Y P, et al. A new method for arrival time determination of impact signal based on HHT and AIC[J].Mechanical Systems and Signal Processing, 2017, 86: 177-187. DOI:10.1016/j.ymssp.2016.10.003.
[25] McLachlan G J, Krishnan T.The EM algorithm and extensions[M]. 2nd edition. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008:18-22. DOI:10.1002/9780470191613.
[26] Shuai Y, Shuai J, Zhang X. Experimental and numerical investigation of the strain response of a dented API 5L X52 pipeline subjected to continuously increasing internal pressure[J].Journal of Natural Gas Science and Engineering, 2018, 56: 81-92. DOI:10.1016/j.jngse.2018.05.037.