参考文献/References:
[1] 田伟宏. 智能变电站网络异常检测方法的研究与实现[D]. 沈阳:中国科学院沈阳计算技术研究所,2020.
Tian H W. Research and implementation of network anomaly detection method for intelligent substation [D]. Shenyang: Shenyang Institute of Computing Technology, Chinese Academy of Sciences, 2020.(in Chinese)
[2] Zhu M Y, Ye K J, Xu C Z. Network anomaly detection and identification based on deep learning methods [C]// Proceedings of 2018 International Conference on Cloud Computing. Seattle, WA, USA, 2018: 219-234. DOI:10.1007/978-3-319-94295-7_15.
[3] Buczak A L, Guven E. A survey of data mining and machine learning methods for cyber security intrusion detection[J]. IEEE Communications Surveys and Tutorials, 2016, 18(2): 1153-1176. DOI:10.1109/comst.2015.2494502.
[4] Sharma S,Diarra A, Alvares F, et al. KDetect: unsupervised anomaly detection for cloud systems based on time series clustering[C]//Proceedings of the 3rd International Workshop on Systems and Network Telemetry and Analytics. New York, USA: ACM, 2020: 3-10. DOI:10.1145/3391812.3396271.
[5] Mao J W,Hu Y Q, Jiang D, et al. CBFS: A clustering-based feature selection mechanism for network anomaly detection[J]. IEEE Access, 2020, 8: 116216-116225. DOI:10.1109/access.2020.3004699.
[6] Chen C M, Guan D J, Huang Y Z, et al. Anomaly network intrusion detection using hidden Markov model [J]. International Journal of Innovative Computing, Information and Control, 2016, 12(2):569-580.
[7] Wang D G, Dong J C, Huang L, et al. Anomaly behavior detection based on ensemble decision tree in power distribution network [C]// Proceeding of 4th Annual International Conference on Network and Information Systems for Computers. Wuhan, China, 2018: 312-316.
[8] 陆悠, 李伟, 罗军舟, 等. 一种基于选择性协同学习的网络用户异常行为检测方法[J]. 计算机学报, 2014, 37(1): 28-40.
Lu Y, Li W, Luo J Z, et al. A network user’s abnormal behavior detection approach based on selective collaborative learning [J].Chinese Journal of Computers, 2014, 37(1): 28-40.(in Chinese)
[9] Gao X W, Shan C, Hu C Z, et al. An adaptive ensemble machine learning model for intrusion detection[J]. IEEE Access, 2019, 7: 82512-82521. DOI:10.1109/access.2019.2923640.
[10] Khonde S R, Ulagamuthalvi V. Ensemble-based semi-supervised learning approach for a distributed intrusion detection system[J]. Journal of Cyber Security Technology, 2019, 3(3): 163-188. DOI:10.1080/23742917.2019.1623475.
[11] 黄立威,江碧涛,吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-1647.
Huang L W, Jiang B T,Lü S Y, et al. Survey on deep learning based recommender systems [J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647.(in Chinese)
[12] Kwon D, Kim H, Kim J, et al. A survey of deep learning-based network anomaly detection[J].Cluster Computing, 2019, 22(S1): 949-961. DOI:10.1007/s10586-017-1117-8.
[13] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [C]// Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770-778.
[14] Ioffe S. Batch renormalization: Towards reducing minibatch dependence in batch-normalized models [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, CA, USA, 2017: 1946-1954.
[15] Li M, Zhang T, Chen Y Q, et al. Efficient minibatch training for stochastic optimization [C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2014: 661-670. DOI:10.1145/2623330.2623612.