[1]钱玲,李冰,陈希,等.黄金尾砂重金属淋溶释放规律[J].东南大学学报(自然科学版),2020,50(6):1084-1089.[doi:10.3969/j.issn.1001-0505.2020.06.013]
 Qian Ling,Li Bing,Chen Xi,et al.Leaching characteristics and release rule of heavy metals from gold tailings[J].Journal of Southeast University (Natural Science Edition),2020,50(6):1084-1089.[doi:10.3969/j.issn.1001-0505.2020.06.013]
点击复制

黄金尾砂重金属淋溶释放规律()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第6期
页码:
1084-1089
栏目:
环境科学与工程
出版日期:
2020-11-20

文章信息/Info

Title:
Leaching characteristics and release rule of heavy metals from gold tailings
作者:
钱玲12李冰13陈希13李先宁4林海13
1北京科技大学能源与环境工程学院, 北京 100083; 2中日友好环境保护中心, 北京 100029; 3工业典型污染物资源化处理北京市重点实验室, 北京 100083; 4东南大学能源与环境学院, 南京 210096
Author(s):
Qian Ling12 Li Bing13 Chen Xi13 Li Xianning4 Lin Hai13
1School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
2Sino-Japan Friendship Center for Environmental Protection, Beijing 100029, China
3Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
4School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
黄金尾砂 重金属 淋溶特征 释放动力学模型 模拟降雨
Keywords:
tailings of gold mine heavy metals leaching characteristics release kinetics model simulated rainfall
分类号:
X53
DOI:
10.3969/j.issn.1001-0505.2020.06.013
摘要:
为探究黄金尾砂中重金属释放规律及其环境影响,通过动态淋溶实验研究了某地黄金矿山尾砂中重金属淋溶释放特征.配制初始pH值分别为3.0、4.5和6.0的人工模拟酸雨淋溶液,使用柱式淋溶装置开展黄金尾砂中重金属淋出动力学实验.实验结果表明:尾砂中重金属Mn属于轻度污染,Zn和Cu属于中度至严重污染,Pb为严重污染,而As为严重至极度污染;随着淋溶时间的增加,不同初始pH值组尾砂淋出液的pH值均逐渐升高,而后稳定在7.9~8.2之间,表明该尾砂碱性矿物含量较高,具有一定的酸缓冲能力,而淋出液电导率值均呈现先急剧减小随后趋于稳定的趋势;重金属Zn和Mn从尾砂中的释放率高于As、Cu和Pb,而Pb和Zn对酸性淋溶液的敏感程度相对较高;一级动力学方程和双常数速率方程可较好地描述尾砂中As、Pb、Cu、Mn和Zn淋出的动力学过程,抛物线方程也能较好地描述Cu、Mn淋出的动力学过程;尾砂中重金属淋溶释放是由多种因素协同控制的复杂过程.
Abstract:
To explore the rule of heavy metal release in gold tailings and its impacts on the environment, the leaching and release characteristics of heavy metals in tailings from a gold mine were studied by a dynamic leaching experiment. The artificial simulated acid rain solution with initial pH values of 3.0, 4.5 and 6.0 was prepared, and the kinetics experiment of heavy metal leaching from gold tailings was carried out with a column leaching device. Experimental results show that the heavy metal Mn in tailings is slightly polluted, Zn and Cu are moderately or severely polluted, Pb is severely polluted, and As is severely or extremely polluted. With the increase of leaching time, the pH values of the tailing leaching solutions in different initial pH value groups gradually increase, and then stabilize between 7.9 and 8.2, indicating that the tailings have a higher alkaline mineral content and a certain acid buffering capacity, while the conductivity values of the leaching solutions all show a sharp decrease first and then tend to be stable. The release rates of Zn and Mn from tailings are both higher than those of As, Cu and Pb, while the sensitivities of Pb and Zn to the acid leaching solution are relatively higher among the studied heavy metals. The first-order kinetics equation and the double-constant rate equation can better describe the leaching kinetics of As, Pb, Cu, Mn, and Zn from tailings, and the parabolic equation can also describe the leaching kinetics of Cu and Mn well. The leaching and release of heavy metals in tailings is a complex process controlled by multi-factors.

参考文献/References:

[1] 国家发展和改革委员会.中国资源综合利用年度报告(2014)[J].再生资源与循环经济,2014,7(10):3-8.DOI:10.3969/j.issn.1674-0912.2014.10.003.
National Development and Reform Commission.Annualreport on comprehensive utilization of resources in China(2014)[J].Recyclable Resources and Circular Economy,2014,7(10):3-8.DOI:10.3969/j.issn.1674-0912.2014.10.003. (in Chinese)
[2] Boonsrang A,Chotpantarat S,Sutthirat C.Factors controlling the release of metals and a metalloid from the tailings of a gold mine in Thailand[J].Geochemistry:Exploration,Environment,Analysis,2018,18(2):109-119.DOI:10.1144/geochem2017-034.
[3] Fu S,Lu J M.Temperature-driven variation in the removal of heavy metals from contaminated tailings leaching in northern Norway[J].Environmental Monitoring and Assessment,2019,191(2):123.DOI:10.1007/s10661-019-7244-3.
[4] Lee P K,Kang M J,Jo H Y,et al.Sequential extraction and leaching characteristics of heavy metals in abandoned tungsten mine tailings sediments[J].Environmental Earth Sciences,2012,66(7):1909-1923.DOI:10.1007/s12665-011-1415-z.
[5] 曹月明,田江涛,李朝晖,等.某金矿废石淋溶实验[J].现代矿业,2017,33(5):159-160,163.
  Cao Y M,Tian J T,Li C H,et al.Leaching experimental study on gold tailings[J].Modern Mining,2017,33(5):159-160,163.(in Chinese)
[6] 朱继保,陈繁荣,卢龙,等.广东凡口Pb-Zn尾矿中重金属的表生地球化学行为及其对矿山环境修复的启示[J].环境科学学报,2005,25(3):414-422.DOI:10.13671/j.hjkxxb.2005.03.025.
Zhu J B,Chen F R,Lu L,et al.Heavy metal geochemistry behavior during the oxidation of the Fankou Pb-Zn mine tailings in Guangdong Province and the implications for environmental remediation of the mines[J].Acta Scientiae Circumstantiae,2005,25(3):414-422.DOI:10.13671/j.hjkxxb.2005.03.025. (in Chinese)
[7] 李晓艳,吴超.湖南某铅锌矿土壤重金属形态分析及淋溶液pH值对其淋滤的影响[J].环境工程,2017,35(5):172-176.DOI:10.13205/j.hjgc.201705037.
Li X Y,Wu C.Fraction distribution and effect of leachate pH on the migration of heavy metals in soil around a lead-zinc mine in Hunan province[J].Environmental Engineering,2017,35(5):172-176.DOI:10.13205/j.hjgc.201705037. (in Chinese)
[8] 濮阳雪华,邓汝英,王春春,等.德兴铜矿尾砂重金属在模拟降雨下的淋溶特征[J].环境工程,2019,37(5):61-65.DOI:10.13205/j.hjgc.201905012.
Puyang X H,Deng R Y,Wang C C,et al.Leaching characteristics of heavy metals from tailings under simulated rainfall in Dexing copper mine[J].Environmental Engineering,2019,37(5):61-65.DOI:10.13205/j.hjgc.201905012. (in Chinese)
[9] Fan L Q,Zhou X,Luo H B,et al.Release of heavy metals from the pyrite tailings of Huangjiagou pyrite mine:Batch experiments[J].Sustainability,2016,8(1):96.DOI:10.3390/su8010096.
[10] Hansen H K,Yianatos J B,Ottosen L M.Speciation and leachability of copper in mine tailings from porphyry copper mining:Influence of particle size[J].Chemosphere,2005,60(10):1497-1503.DOI:10.1016/j.chemosphere.2005.01.086.
[11] Guo Y G,Huang P,Zhang W G,et al.Leaching of heavy metals from Dexing copper mine tailings pond[J].Transactions of Nonferrous Metals Society of China,2013,23(10):3068-3075.DOI:10.1016/s1003-6326(13)62835-6.
[12] 袁丽,刘阳生.铅锌尾矿中重金属在模拟酸雨淋溶下的浸出规律[J].环境工程,2012,30(S2):586-590,292.DOI:10.13205/j.hjgc.2012.s2.160.
Yuan L,Liu Y S.The leaching principles of heavy metals in lead and zinc tailings in simulation acid rain[J].Environmental Engineering,2012,30(S2):586-590,292.DOI:10.13205/j.hjgc.2012.s2.160. (in Chinese)
[13] Muller G.Index of geoaccumulation in sediments of the Rhine river[J].GeoJournal,1969,2(3):109-118.
[14] 王呈,钱新,李慧明,等.南京公园降尘中重金属污染水平及风险评价[J].环境科学,2016,37(5):1662-1669.DOI:10.13227/j.hjkx.2016.05.009.
Wang C,Qian X,Li H M,et al.Pollution evaluation and risk assessment of heavy metals from atmospheric deposition in the parks of Nanjing[J].Environmental Science,2016,37(5):1662-1669.DOI:10.13227/j.hjkx.2016.05.009. (in Chinese)
[15] 国家环境保护局,中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990:330-378.
[16] 张斯宇,何绪文,李焱,等.铅锌矿区土壤重金属的淋溶实验研究[J].矿业科学学报,2018,3(4):406-416.DOI:10.19606/j.cnki.jmst.2018.04.013.
Zhang S Y,He X W,Li Y,et al.Leaching experimental study on heavy metals in soil lead-zinc mine[J].Journal of Mining Science and Technology,2018,3(4):406-416.DOI:10.19606/j.cnki.jmst.2018.04.013. (in Chinese)
[17] Cappuyns V,Alian V,Vassilieva E,et al.pH dependent leaching behavior of Zn,Cd,Pb,Cu and as from mining wastes and slags:Kinetics and mineralogical control[J].Waste and Biomass Valorization,2014,5(3):355-368.DOI:10.1007/s12649-013-9274-3.
[18] 郑顺安,郑向群,张铁亮,等.污染紫色土重金属的淋溶特征及释放动力学研究[J].水土保持学报,2011,25(4):253-256.DOI:10.13870/j.cnki.stbcxb.2011.04.003.
Zheng S A,Zheng X Q,Zhang T L,et al.Study on leaching characteristics and release kinetics of heavy metals in polluted purple soil[J].Journal of Soil and Water Conservation,2011,25(4):253-256.DOI:10.13870/j.cnki.stbcxb.2011.04.003. (in Chinese)
[19] 卢楠.尾矿砂重金属元素释放迁移特征[J].环境保护前沿,2019,9(3):286-289.
  Lu N.Release and migration characteristics of heavy metals in tailings advances in environmental protection[J].Advances in Environmental Protection,2019,9(3):286-289.(in Chinese)

相似文献/References:

[1]高海鹰,程阳,秦庆东.有机改性凹土对地下水中2,4-二氯酚的吸附[J].东南大学学报(自然科学版),2012,42(6):1217.[doi:10.3969/j.issn.1001-0505.2012.06.035]
 Gao Haiying,Cheng Yang,Qin Qingdong.Adsorption of 2,4-dichlorophenol in groundwater by surfactant-modified attapulgite[J].Journal of Southeast University (Natural Science Edition),2012,42(6):1217.[doi:10.3969/j.issn.1001-0505.2012.06.035]
[2]解建光,李贺,石俊青.路面雨水径流重金属赋存状态研究[J].东南大学学报(自然科学版),2010,40(5):1019.[doi:10.3969/j.issn.1001-0505.2010.05.026]
 Xie Jianguang,Li He,Shi Junqing.Partitioning of heavy metals in expressway stormwater runoff[J].Journal of Southeast University (Natural Science Edition),2010,40(6):1019.[doi:10.3969/j.issn.1001-0505.2010.05.026]
[3]王学涛,金保升,仲兆平,等.城市生活垃圾焚烧底灰熔融处理实验研究[J].东南大学学报(自然科学版),2005,35(1):111.[doi:10.3969/j.issn.1001-0505.2005.01.024]
 Wang Xuetao,Jin Baosheng,Zhong Zhaoping,et al.Study on melting treatment of bottom ashes from municipal solid waste incinerator[J].Journal of Southeast University (Natural Science Edition),2005,35(6):111.[doi:10.3969/j.issn.1001-0505.2005.01.024]
[4]陈蕾,刘松玉,杜延军,等.水泥固化含铅污染土无侧限抗压强度预测方法[J].东南大学学报(自然科学版),2010,40(3):609.[doi:10.3969/j.issn.1001-0505.2010.03.033]
 Chen Lei,Liu Songyu,Du Yanjun,et al.Unconfined compressive strength prediction of cement solidified/stabilized lead-contaminated soils[J].Journal of Southeast University (Natural Science Edition),2010,40(6):609.[doi:10.3969/j.issn.1001-0505.2010.03.033]
[5]李贺,石峻青,沈刚,等.高速公路雨水径流重金属出流特性[J].东南大学学报(自然科学版),2009,39(2):345.[doi:10.3969/j.issn.1001-0505.2009.02.029]
 Li He,Shi Junqing,Shen Gang,et al.Characteristics of rainfall runoff discharge rule caused by heavy metals on express highway[J].Journal of Southeast University (Natural Science Edition),2009,39(6):345.[doi:10.3969/j.issn.1001-0505.2009.02.029]
[6]曾小强,陈晓平,梁财,等.温度对污泥流化床焚烧飞灰重金属迁移的影响[J].东南大学学报(自然科学版),2015,45(1):97.[doi:10.3969/j.issn.1001-0505.2015.01.018]
 Zeng Xiaoqiang,Chen Xiaoping,Liang Cai,et al.Effect of temperature on migration of heavy metals in fly ash in a fluidized bed incinerator for sewage sludge[J].Journal of Southeast University (Natural Science Edition),2015,45(6):97.[doi:10.3969/j.issn.1001-0505.2015.01.018]
[7]贾鲁涛,崔强,梅浩,等.湖泊淤泥与生活污泥复合烧结砖的制备、性能及环境安全性[J].东南大学学报(自然科学版),2016,46(6):1301.[doi:10.3969/j.issn.1001-0505.2016.06.032]
 Jia Lutao,Cui Qiang,Mei Hao,et al.Preparation, properties and environmental safety of fired bricks made from lake silt and sewage sludge[J].Journal of Southeast University (Natural Science Edition),2016,46(6):1301.[doi:10.3969/j.issn.1001-0505.2016.06.032]
[8]王芳,王娟,韩苗苗,等.大学校园室内PM2.5重金属污染特征及其健康风险评价[J].东南大学学报(自然科学版),2018,48(5):955.[doi:10.3969/j.issn.1001-0505.2018.05.026]
 Wang Fang,Wang Juan,Han Miaomiao,et al.Characteristics and health risk assessment of indoor PM2.5-bound heavy metals in university campus[J].Journal of Southeast University (Natural Science Edition),2018,48(6):955.[doi:10.3969/j.issn.1001-0505.2018.05.026]
[9]梁止水,高琦,刘豪伟,等.煤矸石制备NaX型分子筛及其对Cd2+的吸附性能[J].东南大学学报(自然科学版),2020,50(4):741.[doi:10.3969/j.issn.1001-0505.2020.04.019]
 Liang Zhishui,Gao Qi,Liu Haowei,et al.Synthesis of NaX zeolite from coal gangue and its adsorption capability for Cd2+[J].Journal of Southeast University (Natural Science Edition),2020,50(6):741.[doi:10.3969/j.issn.1001-0505.2020.04.019]

备注/Memo

备注/Memo:
收稿日期: 2020-05-15.
作者简介: 钱玲(1980—),女,博士生,高级工程师;林海(联系人),男,博士,教授,博士生导师,linhai@ces.uetb.edu.cn.
基金项目: “十二五”国家科技重大专项资助项目(2015ZX07205003)、国家重点研发计划资助项目(2018YFC0604604).
引用本文: 钱玲,李冰,陈希,等.黄金尾砂重金属淋溶释放规律[J].东南大学学报(自然科学版),2020,50(6):1084-1089. DOI:10.3969/j.issn.1001-0505.2020.06.013.
更新日期/Last Update: 2020-11-20