[1]毛礼磊,陈一梅,李鑫.基于小波变换的内河航道船行波时频特性分析[J].东南大学学报(自然科学版),2020,50(6):1115-1122.[doi:10.3969/j.issn.1001-0505.2020.06.018]
 Mao Lilei,Chen Yimei,Li Xin.Time-frequency analysis on ship waves in inland waterways using wavelet transform[J].Journal of Southeast University (Natural Science Edition),2020,50(6):1115-1122.[doi:10.3969/j.issn.1001-0505.2020.06.018]
点击复制

基于小波变换的内河航道船行波时频特性分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第6期
页码:
1115-1122
栏目:
交通运输工程
出版日期:
2020-11-20

文章信息/Info

Title:
Time-frequency analysis on ship waves in inland waterways using wavelet transform
作者:
毛礼磊陈一梅李鑫
东南大学交通学院, 南京 211189
Author(s):
Mao Lilei Chen Yimei Li Xin
School of Transportation, Southeast University, Nanjing 211189, China
关键词:
小波变换 内河航道 船行波 小波能谱 全局小波能谱
Keywords:
wavelet transform inland waterways ship waves wavelet energy spectrum global wavelet energy spectrum
分类号:
U611;TV139.2
DOI:
10.3969/j.issn.1001-0505.2020.06.018
摘要:
为了准确分析内河航道中船行波的时频特性,将小波变换理论应用于内河航道船行波频谱分析中.通过建立水槽试验获得船舶以不同条件航行产生的水位波动数据,对8种工况下船舶航行产生的船行波,从时间尺度解析船行波波列结构特征,从频率尺度探究船行波能量分布特征及船舶航行条件的影响.结果表明,船行波小波能谱呈现局部突出的特点,小波谱能量主要集中在船行波低频主波段,对应的频率范围为0~0.35 Hz,与时间尺度上的水位波动过程相对应.当船舶航速、吃水深度增大时,船行波全局小波能量峰值显著增大,且同一位置处受吃水深度影响更大;当船舶航速、吃水深度相同时,同一位置处船行波全局小波能量峰值随离岸距离增大而减小.该研究可为内河航道中船行波频谱特征分析提供新途径.
Abstract:
To accurately analyze the time-frequency characteristics of ship waves in inland waterways, a wavelet transform theory was applied to the frequency spectrum analysis of ship waves. The flume tests were established to obtain water-level fluctuation data caused by ship sailing under different conditions. For the waves generated by the ship under 8 working conditions, the structural characteristics of the ship wave train were analyzed in the time domain, and the energy distribution of ship waves and the influences of ship sailing conditions on it were explored in the frequency domain. The results show that the wavelet energy spectrum of ship waves is locally prominent, and the energy of the wavelet spectrum is mainly concentrated in the main band of the water-level drop and the low frequency, and the corresponding frequency range is 0-0.35 Hz corresponding to the process of water-level fluctuation on time scale. When the ship speed and the draft increase, the global wavelet energy peak of ship waves increases significantly, and the influence on the draft at the same position is greater. When the ship speed and the draft are the same, the global wavelet energy peak of ship waves at the same position decreases with the increase of the offshore distance. The study provides a new way to analyze the frequency spectrum characteristics of ship waves in inland waterways.

参考文献/References:

[1] 李志松,吴卫,陈虹,等.内河航道中船行波在岸坡爬高的数值模拟[J].水动力学研究与进展(A辑),2016,31(5):556-566. DOI: 10.16076/j.cnki.cjhd.2016.05.005.
Li Z S, Wu W, Chen H, et al. Numerical simulation of run-up of ship waves on slope bank in channel[J]. Journal of Hydrodynamics, 2016, 31(5): 556-566. DOI:10.16076/j.cnki.cjhd.2016.05.005. (in Chinese)
[2] de Roo S, Vanhaute L, Troch P. Impact of ship waves on the sediment transport in a nature friendly bank protection[C]//16th International Conference on Fluvial Hydraulics(River Flow). September 05-07, 2012, San Jose, Costa Rica. Boca Raton: CRC Press, 2012: 1309-1316.
[3] de Roo S, Troch P. Evaluation of the effectiveness of a living shoreline in a confined, non-tidal waterway subject to heavy shipping traffic[J].River Research and Applications, 2015, 31(8): 1028-1039. DOI:10.1002/rra.2790.
[4] Bauer B O, Lorang M S, Sherman D J. Estimating boat-wake-induced levee erosion using sediment suspension measurements[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2002, 128(4): 152-162. DOI:10.1061/(asce)0733-950x(2002)128:4(152).
[5] Houser C. Sediment resuspension by vessel-generated waves along the Savannah River, Georgia[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2011, 137(5): 246-257. DOI: 10.1061/(asce)ww.1943-5460.0000088.
[6] Göransson G, Larson M, Althage J. Ship-generated waves and induced turbidity in the Göta Älv river in Sweden[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2014, 140(3): 04014004. DOI:10.1061/(asce)ww.1943-5460.0000224.
[7] Wolter C, Arlinghaus R. Navigation impacts on freshwater fish assemblages: The ecological relevance of swimming performance[J]. Reviews in Fish Biology and Fisheries, 2003, 13(1): 63-89. DOI: 10.1021/ac00295a052.
[8] Wolter C, Arlinghaus R, Sukhodolov A, et al. A model of navigation-induced currents in inland waterways and implications for juvenile fish displacement[J]. Environmental Management, 2004, 34(5): 656-668. DOI:10.1007/s00267-004-0201-z.
[9] Schludermann E, Liedermann M, Hoyer H, et al. Effects of vessel-induced waves on the YOY-fish assemblage at two different habitat types in the main stem of a large river(Danube, Austria)[J]. Hydrobiologia, 2014, 729(1): 3-15. DOI:10.1007/s10750-013-1680-9.
[10] Soomere T. Long ship waves in shallow water bodies[M]//Applied Wave Mathematics. Berlin, Heidelberg: Springer, 2009: 193-228. DOI:10.1007/978-3-642-00585-5_12.
[11] Torsvik T. Modelling of ship waves from high-speed vessels[M]//Applied Wave Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 229-263.
[12] Bellafiore D, Zaggia L, Broglia R, et al. Modeling ship-induced waves in shallow water systems: The Venice experiment[J].Ocean Engineering, 2018, 155: 227-239. DOI:10.1016/j.oceaneng.2018.02.039.
[13] Soomere T. Nonlinear components of ship wake waves[J].Applied Mechanics Reviews, 2007, 60(3): 120-138. DOI:10.1115/1.2730847.
[14] Rapaglia J, Zaggia L, Ricklefs K, et al. Characteristics of ships’ depression waves and associated sediment resuspension in Venice Lagoon, Italy[J].Journal of Marine Systems, 2011, 85(1/2): 45-56. DOI:10.1016/j.jmarsys.2010.11.005.
[15] Bertram V. Practical ship hydrodynamics[M]. Oxford: Butterworth-Heinemann, 2000: 66-67.
[16] Verney R, Deloffre J, Brun-Cottan J C, et al. The effect of wave-induced turbulence on intertidal mudflats: Impact of boat traffic and wind[J].Continental Shelf Research, 2007, 27(5): 594-612. DOI:10.1016/j.csr.2006.10.005.
[17] Houser C. Relative importance of vessel-generated and wind waves to salt marsh erosion in a restricted fetch environment[J]. Journal of Coastal Research, 2010, 262: 230-240. DOI:10.2112/08-1084.1.
[18] Velegrakis A F, Vousdoukas M I, Vagenas A M, et al. Field observations of waves generated by passing ships:A note[J]. Coastal Engineering, 2007, 54(4): 369-375. DOI:10.1016/j.coastaleng.2006.11.001.
[19] de Roo S, Troch P. Field monitoring of ship wave action on environmentally friendly bank protection in a confined waterway[J].Journal of Waterway, Port, Coastal, and Ocean Engineering, 2013, 139(6): 527-534. DOI:10.1061/(asce)ww.1943-5460.0000202.
[20] MacFarlane G J. Marine vessel wave wake: Focus on vessel operations within sheltered waterways[D]. Australian: University of Tasmania, 2012.
[21] Fleit G, Baranya S, Krámer T, et al. A practical framework to assess the hydrodynamic impact of ship waves on river banks[J].River Research and Applications, 2019, 35(9): 1428-1442. DOI:10.1002/rra.3522.
[22] Daubechies I, Bates B J. Ten lectures on wavelets[J]. The Journal of the Acoustical Society of America, 1993, 93(3): 1671. DOI:10.1121/1.406784.
[23] Grossmann A, Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape[J].SIAM Journal on Mathematical Analysis, 1984, 15(4): 723-736. DOI:10.1137/0515056.

相似文献/References:

[1]高西奇,连乃祥,邹采荣,等.基于格型矢量量化的小波零树图像编码方法[J].东南大学学报(自然科学版),1999,29(5):41.[doi:10.3969/j.issn.1001-0505.1999.05.008]
 Gao Xiqi,Lian Naixiang,Zou Cairong,et al.Wavelet Zerotree Image Coding Based on Lattice Vector Quantization[J].Journal of Southeast University (Natural Science Edition),1999,29(6):41.[doi:10.3969/j.issn.1001-0505.1999.05.008]
[2]夏振平,李晓华,崔渊,等.基于小波变换的闪烁背光LCD响应时间估算[J].东南大学学报(自然科学版),2011,41(1):37.[doi:10.3969/j.issn.1001-0505.2011.01.008]
 Xia Zhenping,Li Xiaohua,Cui Yuan,et al.Response time estimation of blinking backlight LCD based on wavelet transformation[J].Journal of Southeast University (Natural Science Edition),2011,41(6):37.[doi:10.3969/j.issn.1001-0505.2011.01.008]
[3]李岩,过秀成,杨洁,等.基于小波变换和频谱分析的交叉口群路径分级方法[J].东南大学学报(自然科学版),2012,42(1):168.[doi:10.3969/j.issn.1001-0505.2012.01.031]
 Li Yan,Guo Xiucheng,Yang Jie,et al.Routes classification method at intersections group using wavelet transform and spectrum analysis[J].Journal of Southeast University (Natural Science Edition),2012,42(6):168.[doi:10.3969/j.issn.1001-0505.2012.01.031]

备注/Memo

备注/Memo:
收稿日期: 2020-04-26.
作者简介: 毛礼磊(1992—),男,博士生;陈一梅(联系人),女,博士,教授,博士生导师,chenyimei@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51479035)、东南大学优秀博士学位论文培育基金资助项目(YBPY1883).
引用本文: 毛礼磊,陈一梅,李鑫.基于小波变换的内河航道船行波时频特性分析[J].东南大学学报(自然科学版),2020,50(6):1115-1122. DOI:10.3969/j.issn.1001-0505.2020.06.018.
更新日期/Last Update: 2020-11-20