参考文献/References:
[1] 张家旭,施正堂,杨雄,等.基于Elman神经网络的车轮滑移率跟踪控制[J].华中科技大学学报(自然科学版),2020,48(6):64-69. DOI:10.13245/j.hust.200611.
Zhang J X, Shi Z T, Yang X, et al. Wheel slip tracking control of vehicle based on Elman neural network[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2020, 48(6): 64-69. DOI:10.13245/j.hust.200611. (in Chinese)
[2] Satzger C, de Castro R. Predictive brake control for electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 977-990. DOI:10.1109/TVT.2017.2751104.
[3] Kuo C Y, Yeh E C. A four-phase control scheme of an anti-skid brake system for all road conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1992, 206(4): 275-283. DOI:10.1243/pime_proc_1992_206_188_02.
[4] Pasillas-Lépine W. Hybrid modeling and limit cycle analysis for a class of five-phase anti-lock brake algorithms[J]. Vehicle System Dynamics, 2006, 44(2): 173-188. DOI:10.1080/00423110500385873.
[5] Tanelli M, Osorio G, di Bernardo M, et al. Existence, stability and robustness analysis of limit cycles in hybrid anti-lock braking systems[J]. International Journal of Control, 2009, 82(4): 659-678. DOI:10.1080/00207170802203598.
[6] 王伟达,丁能根,张为,等.ABS逻辑门限值自调整控制方法研究与试验验证[J].机械工程学报,2010,46(22):90-95,104. DOI:10.3901/JME.2010.22.090.
Wang W D, Ding N G, Zhang W, et al. Research and verification of the logic threshold self-adjusting control method for ABS[J]. Journal of Mechanical Engineering, 2010, 46(22): 90-95, 104. DOI:10.3901/JME.2010.22.090. (in Chinese)
[7] 张家旭,杨雄,施正堂,等.基于新型跟踪微分器的车轮滑移率跟踪控制[J].东南大学学报(自然科学版),2020,50(4):767-774. DOI:10.3969/j.issn.1001-0505.2020.04.022.
Zhang J X, Yang X, Shi Z T, et al. Tracking control of wheel slip based on new tracking differentiator[J]. Journal of Southeast University(Natural Science Edition), 2020, 50(4): 767-774. DOI:10.3969/j.issn.1001-0505.2020.04.022. (in Chinese)
[8] Johansen T A, Petersen I,Kalkkuhl J, et al. Gain-scheduled wheel slip control in automotive brake systems[J]. IEEE Transactions on Control Systems Technology, 2003, 11(6): 799-811. DOI:10.1109/TCST.2003.815607.
[9] Park K S, Lim J T. Wheel slip control for ABS with time delay input using feedback linearization and adaptive sliding mode control[C]//2008 International Conference on Control, Automation and Systems. October 14-17, 2008, Seoul, South Korea. New York: IEEE, 2008: 268-273. DOI:10.1109/ICCAS.2008.4694658.
[10] Amodeo M, Ferrara A,Terzaghi R, et al. Wheel slip control via second-order sliding-mode generation[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(1): 122-131. DOI:10.1109/TITS.2009.2035438.
[11] Mirzaei M, Mirzaeinejad H. Optimal design of a non-linear controller for anti-lock braking system[J]. Transportation Research Part C: Emerging Technologies, 2012, 24: 19-35. DOI:10.1016/j.trc.2012.01.008.
[12] Yu H X,Qi Z Q, Duan J M, et al. Multiple model adaptive backstepping control for antilock braking system based on LuGre dynamic tyre model[J]. International Journal of Vehicle Design, 2015, 69(1/2/3/4): 168-184. DOI:10.1504/ijvd.2015.073120.
[13] Zhang J X, Li J. Adaptive backstepping sliding mode control for wheel slip tracking of vehicle with uncertainty observer[J]. Measurement and Control, 2018, 51(9/10): 396-405. DOI:10.1177/0020294018795321.
[14] Kiencke U, Nielsen L. Automotive control systems[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 319-320. DOI:10.1007/b137654.
[15] Chen W H,Ballance D J, Gawthrop P J, et al. A nonlinear disturbance observer for robotic manipulators[J]. IEEE Transactions on Industrial Electronics, 2000, 47(4): 932-938. DOI:10.1109/41.857974.
[16] Yang L, Yang J Y. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J].International Journal of Robust and Nonlinear Control, 2011, 21(16): 1865-1879. DOI:10.1002/rnc.1666.
[17] Bhat S P, Bernstein D S. Continuous finite-time stabilization of the translational and rotational double integrators[J].IEEE Transactions on Automatic Control, 1998, 43(5): 678-682. DOI:10.1109/9.668834.
[18] Song J. Performance evaluation of a hybrid electric brake system with a sliding mode controller[J].Mechatronics, 2005, 15(3): 339-358. DOI:10.1016/j.mechatronics.2004.09.005.
相似文献/References:
[1]王海,蔡英凤,陈龙,等.基于Haar-NMF特征和改进SOMPNN的车辆检测算法[J].东南大学学报(自然科学版),2016,46(3):499.[doi:10.3969/j.issn.1001-0505.2016.03.008]
Wang Hai,Cai Yingfeng,Chen Long,et al.Vehicle detection algorithm based on Haar-NMF features and improved SOMPNN[J].Journal of Southeast University (Natural Science Edition),2016,46(6):499.[doi:10.3969/j.issn.1001-0505.2016.03.008]
[2]张家旭,杨雄,施正堂,等.基于新型跟踪微分器的车轮滑移率跟踪控制[J].东南大学学报(自然科学版),2020,50(4):767.[doi:10.3969/j.issn.1001-0505.2020.04.022]
Zhang Jiaxu,Yang Xiong,Shi Zhengtang,et al.Tracking control of wheel slip based on new tracking differentiator[J].Journal of Southeast University (Natural Science Edition),2020,50(6):767.[doi:10.3969/j.issn.1001-0505.2020.04.022]