[1]胡启洲,张晓亮,吴翊恺,等.车路协同下高速公路运行态势监测方法[J].东南大学学报(自然科学版),2020,50(6):1143-1147.[doi:10.3969/j.issn.1001-0505.2020.06.022]
 Hu Qizhou,Zhang Xiaoliang,Wu Yikai,et al.Monitoring method for traffic situation of highway under vehicle-infrastructure cooperation[J].Journal of Southeast University (Natural Science Edition),2020,50(6):1143-1147.[doi:10.3969/j.issn.1001-0505.2020.06.022]
点击复制

车路协同下高速公路运行态势监测方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第6期
页码:
1143-1147
栏目:
交通运输工程
出版日期:
2020-11-20

文章信息/Info

Title:
Monitoring method for traffic situation of highway under vehicle-infrastructure cooperation
作者:
胡启洲12张晓亮1吴翊恺2林娟娟2
1交通运输部公路科学研究院智能交通技术交通运输行业重点实验室, 北京 100088; 2南京理工大学自动化学院, 南京210094
Author(s):
Hu Qizhou12 Zhang Xiaoliang1 Wu Yikai2 Lin Juanjuan2
1 Key Laboratory of Intelligent Transportation Technology Transportation Industry, Research Institute of Highway Ministry of Transport, Beijing 100088, China
2School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
关键词:
车路协同 高速公路 监测系统 评估模型 聚类分析
Keywords:
vehicle-infrastructure cooperation highway monitoring system assessment model cluster analysis
分类号:
U491.2
DOI:
10.3969/j.issn.1001-0505.2020.06.022
摘要:
为了监控高速公路交通状况, 构建了车路协同下高速公路运行态势的监测与评定一体化方法.借助新一代信息通信技术和结合高速公路车辆行驶态势, 在分析道路交通事故主要特征的基础上, 利用车路协同技术构建高速公路运行态势的监测指标体系. 以行驶中的车辆为信息感知对象, 依据大数据技术, 利用不确定性数学方法建立高速公路运行态势的评估模型.结果表明,车路协同下评估模型不但能最大可能地控制高速公路系统中的不安全行为, 而且能最大限度地解决车、路、环境等诸要素的协同问题. 通过对复杂交通环境下高速公路运行态势进行等级界定, 可为用户提供安全、舒适、智能、高效的驾驶感受与交通服务. 采用该评估模型对江苏省境内19条高速公路运行态势聚类分析,所得结果符合江苏省高速公路实时运行情况.该监测与评估方法提高了高速公路运行态势研究的实时性和准确性, 使高速公路系统运行管理达到高效化和安全化.
Abstract:
To monitor the traffic condition of highway, an integrated method for monitoring and evaluating the running situation of the highway under the vehicle-infrastructure cooperation was constructed. With the new generation of information and communication technology and combined with the driving situation of highway vehicles, by analyzing the main characteristics of road traffic accidents, the monitoring index system of the highway operation situation was constructed.The results show that the model can control the unsafe behavior in the highway system and solve the cooperative problems of vehicles, roads and environments. By defining the operating situation of highway in the complex traffic environment, it can provide users with safe, comfortable, intelligent, and efficient driving feeling and traffic service. Through the cluster analysis of the operation situation of 19 highways in Jiangsu Province, the results are in agreement with those obtained under the real-time operation conditions of Jiangsu highway. The monitoring and evaluating method improves the real-time and the accuracy of the highway operation situation, and makes the highway system operation management achieve the high efficiency and the safety.

参考文献/References:

[1] 徐志刚, 李金龙, 赵祥模, 等. 智能公路发展现状与关键技术[J]. 中国公路学报, 2019, 32(8): 1-24. DOI:10.19721/j.cnki.1001-7372.2019.08.001.
Xu Z G, Li J L, Zhao X M, et al. A review on intelligent road and its related key technologies[J]. China Journal of Highway and Transport, 2019, 32(8): 1-24. DOI:10.19721/j.cnki.1001-7372.2019.08.001. (in Chinese)
[2] 陆建, 程泽阳. 道路交通网络安全风险辨识研究进展[J]. 东南大学学报(自然科学版), 2019, 49(2): 404-412.DOI:10.3969/j.issn.1001-0505.2019.02.029.
Lu J, Cheng Z Y. Research and development of road traffic network security risk identification[J].Journal of Southeast University(Natural Science Edition), 2019, 49(2): 404-412.DOI:10.3969/j.issn.1001-0505.2019.02.029. (in Chinese)
[3] 胡启洲, 王海涌, 刘英舜. 道路交通安全态势监控的测度方法[M]. 北京:科学出版社, 2012:83-84.
[4] Wali B, Khattak A J, Karnowski T. Exploring microscopic driving volatility in naturalistic driving environment prior to involvement in safety critical events: Concept of event-based driving volatility[J]. Accident Analysis & Prevention, 2019, 132: 105277. DOI:10.1016/j.aap.2019.105277.
[5] Bagdadi O. Assessing safety critical braking events in naturalistic driving studies[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2013, 16(1): 117-126. DOI:10.1016/j.trf.2012.08.006.
[6] Muralidharan A, Pedarsani R, Varaiya P. Analysis of fixed-time control[J]. Transportation Research Part B: Methodological, 2015, 73: 81-90. DOI:10.1016/j.trb.2014.12.002.
[7] Ma T, Zhou Z,Abdulhai B. Nonlinear multivariate time-space threshold vector error correction model for short term traffic state prediction[J]. Transportation Research Part B: Methodological, 2015, 76(6): 27-47. DOI:10.1016/j.trb.2015.02.008.
[8] Zheng Z D. Recent developments and research needs in modeling lane changing[J].Transportation Research Part B:Methodological, 2014, 60(1): 16-32. DOI:10.1016/j.trb.2013.11.009.
[9] Hernández D, Giesen R, Delgado F. Analysis of real-time control strategies in a corridor with multiple bus services [J]. Transportation Research Part B: Methodological, 2015, 78(8): 83-105.
[10] Risto M, Martens M H. Time and space: The difference between following time headway and distance headway instructions[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2013, 17(2): 45-51. DOI:10.1016/j.trf.2012.09.004.
[11] 赵学刚. 城市道路交通安全综合风险预警控制研究[J]. 中国安全科学学报, 2016, 26(2): 158-163. DOI:10.16265/j.cnki.issn1003-3033.2016.02.027.
Zhao X G. Research on integrated warning control of urban traffic safety risks[J].China Safety Science Journal, 2016, 26(2): 158-163. DOI:10.16265/j.cnki.issn1003-3033.2016.02.027. (in Chinese)
[12] Cancela H, Mauttone A, Urquhart M E. Mathematical programming formulations for transit network design[J]. Transportation Research Part B: Methodological, 2015, 77(7): 17-37. DOI:10.1016/j.trb.2015.03.006.
[13] Wei C,Asakura Y, Iryo T. Formulating the within-day dynamic stochastic traffic assignment problem from a Bayesian perspective[J]. Transportation Research Part B: Methodological, 2014, 59(1): 45-57. DOI:10.1016/j.trb.2013.11.004.
[14] 杨庆芳, 马明辉, 梁士栋, 等. 基于收费数据的高速公路交通状态判别方法[J]. 华南理工大学学报(自然科学版), 2014, 42(12): 51-57, 76.
  Yang Q F, Ma M H, Liang S D, et al. Freeway traffic state identification based on toll data[J].Journal of South China University of Technology(Natural Science Edition), 2014, 42(12): 51-57, 76.(in Chinese)
[15] Sopasakis A, Katsoulakis M A. Information metrics for improved traffic model fidelity through sensitivity analysis and data assimilation[J]. Transportation Research Part B: Methodological, 2016, 86: 1-18. DOI:10.1016/j.trb.2016.01.003.
[16] 赵学刚. 城市道路交通安全风险分类动态评价技术[J]. 中北大学学报(自然科学版), 2014, 35(4): 419-426.
  Zhao X G. Dynamic evaluation technology about classification of urban road traffic safety risks[J].Journal of North University of China(Natural Science Edition), 2014, 35(4): 419-426.(in Chinese)
[17] Sánchez-Martínez G E, Koutsopoulos H N, Wilson N H M. Real-time holding control for high-frequency transit with dynamics[J]. Transportation Research Part B: Methodological, 2016, 83: 1-19. DOI:10.1016/j.trb.2015.11.013.
[18] Jabari S E, Liu H X. A stochastic model of traffic flow: Gaussian approximation and estimation[J].Transportation Research Part B: Methodological, 2013, 47: 15-41. DOI:10.1016/j.trb.2012.09.004.
[19] Milanes V, Villagra J, Godoy J, et al. An intelligent V2I-based traffic management system[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(1): 49-58. DOI:10.1109/TITS.2011.2178839.
[20] Baskar L D,Hellendoorn J, de Schutter B, et al. Traffic control and intelligent vehicle highway systems: A survey[J]. IET Intelligent Transport Systems, 2011, 5(1): 38-52. DOI:10.1049/iet-its.2009.0001.

相似文献/References:

[1]郭建华,黄卫,孙晓莉,等.高速公路工程进度管理系统数据库设计[J].东南大学学报(自然科学版),2001,31(2):94.[doi:10.3969/j.issn.1001-0505.2001.02.023]
 Guo Jianhua,Huang Wei,Sun Xiaoli,et al.Database Design of Expressway Progress Management Systems[J].Journal of Southeast University (Natural Science Edition),2001,31(6):94.[doi:10.3969/j.issn.1001-0505.2001.02.023]
[2]杨顺新,熊聪峰,倪富健.基于范例推理的高速公路事件管理系统[J].东南大学学报(自然科学版),2008,38(5):878.[doi:10.3969/j.issn.1001-0505.2008.05.026]
 Yang Shunxin,Xiong Congfeng,Ni Fujian.Freeway incident management system based on case-based reasoning[J].Journal of Southeast University (Natural Science Edition),2008,38(6):878.[doi:10.3969/j.issn.1001-0505.2008.05.026]
[3]石子石,黄卫,吉祖勤.路面养护管理系统软件结构及功能设计[J].东南大学学报(自然科学版),2001,31(3):48.[doi:10.3969/j.issn.1001-0505.2001.03.012]
 Shi Zishi,Huang Wei,Ji Zuqin.Software Architecture and Function Design of the Pavement Maintenance Management System[J].Journal of Southeast University (Natural Science Edition),2001,31(6):48.[doi:10.3969/j.issn.1001-0505.2001.03.012]
[4]程国柱,胡立伟,韩娟.高速公路驾驶员昼夜感知速度变化规律[J].东南大学学报(自然科学版),2012,42(3):547.[doi:10.3969/j.issn.1001-0505.2012.03.030]
 Cheng Guozhu,Hu Liwei,Han Juan.Variation rule of driver’s perception speed on freeway during daytime and nighttime[J].Journal of Southeast University (Natural Science Edition),2012,42(6):547.[doi:10.3969/j.issn.1001-0505.2012.03.030]
[5]柴干,高祥云.路段拥挤条件下的高速公路匝道协调控制方法[J].东南大学学报(自然科学版),2013,43(3):654.[doi:10.3969/j.issn.1001-0505.2013.03.038]
 Chai Gan,Gao Xiangyun.Coordinated control method for freeway ramp with congestion of road section[J].Journal of Southeast University (Natural Science Edition),2013,43(6):654.[doi:10.3969/j.issn.1001-0505.2013.03.038]
[6]郭延永,刘攀,吴瑶,等.基于属性识别的高速公路交通安全设施系统评价[J].东南大学学报(自然科学版),2013,43(6):1305.[doi:10.3969/j.issn.1001-0505.2013.06.032]
 Guo Yanyong,Liu Pan,Wu Yao,et al.Evaluation of freeway traffic safety facility system based on attribute recognition[J].Journal of Southeast University (Natural Science Edition),2013,43(6):1305.[doi:10.3969/j.issn.1001-0505.2013.06.032]
[7]胡勇,黄卫.时空消耗概念下高速公路收费制式探讨[J].东南大学学报(自然科学版),2001,31(4):84.[doi:10.3969/j.issn.1001-0505.2001.04.020]
 Hu Yong,Huang Wei.Applying Time-Space Consume Conception in Freeway Tolling Method[J].Journal of Southeast University (Natural Science Edition),2001,31(6):84.[doi:10.3969/j.issn.1001-0505.2001.04.020]
[8]安树科,徐良杰,陈国俊,等.基于车路协同技术的信号交叉口改进车辆跟驰模型[J].东南大学学报(自然科学版),2020,50(1):169.[doi:10.3969/j.issn.1001-0505.2020.01.022]
 An Shuke,Xu Liangjie,Chen Guojun,et al.Improved car-following model at signalized intersection based on vehicle-infrastructure cooperation technology[J].Journal of Southeast University (Natural Science Edition),2020,50(6):169.[doi:10.3969/j.issn.1001-0505.2020.01.022]
[9]安树科,徐良杰,钱良辉,等.考虑前方多车优化速度信息的车辆跟驰模型[J].东南大学学报(自然科学版),2020,50(6):1156.[doi:10.3969/j.issn.1001-0505.2020.06.024]
 An Shuke,Xu Liangjie,Qian Lianghui,et al.Car-following model with optimal velocity information of multiple-vehicle ahead[J].Journal of Southeast University (Natural Science Edition),2020,50(6):1156.[doi:10.3969/j.issn.1001-0505.2020.06.024]

备注/Memo

备注/Memo:
收稿日期: 2020-05-11
作者简介: 胡启洲(1975—),男,博士,教授, 博士生导师,qizhouhu@163.com.
基金项目: 国家自然科学基金资助项目(51178157)、 江苏省“六大人才高峰”高层次人才资助项目(JXQC-021)、河南省重点科技攻关资助项目(182102310004)、教育部人文社科科学研究资助项目(18YJAZH028)、交通运输部公路科学研究所智能交通技术交通运输行业重点实验室开放基金课题资助项目(201908)、江苏省研究生培养创新工程研究生科研与实践创新计划资助项目(KYCX20_0287, KYCX19_0319).
引用本文: 胡启洲,张晓亮,吴翊恺,等.车路协同下高速公路运行态势监测方法[J].东南大学学报(自然科学版),2020,50(6):1143-1147. DOI:10.3969/j.issn.1001-0505.2020.06.022.
更新日期/Last Update: 2020-11-20