参考文献/References:
[1] 方炜, 丁辰晨, 甘洋洋, 等. 一种基于混杂系统的Boost变换器切换控制算法[J]. 电源学报, 2016, 14(5): 60-67. DOI:10.13234/j.issn.2095-2805.2016.5.60.
Fang W, Ding C C, Gan Y Y, et al. A switching control algorithm of Boost converter based on hybrid system[J]. Journal of Power Supply, 2016, 14(5): 60-67. DOI:10.13234/j.issn.2095-2805.2016.5.60. (in Chinese)
[2] 任海鹏, 王轩. 电力电子变换器切换控制方法综述[J]. 新型工业化, 2017, 7(10): 20-31. DOI:10.19335/j.cnki.2095-6649.2017.10.004.
Ren H P, Wang X. Review of switching control methods for power electronic converters[J].The Journal of New Industrialization, 2017, 7(10): 20-31. DOI:10.19335/j.cnki.2095-6649.2017.10.004. (in Chinese)
[3] 高明远. 双向DC-DC变换器基于切换系统的建模与储能控制[J]. 电力系统保护与控制, 2012, 40(3): 129-134. DOI:10.3969/j.issn.1674-3415.2012.03.025.
Gao M Y. Modeling and energy storage control for bi-directional DC-DC converter based on switching system[J].Power System Protection and Control, 2012, 40(3): 129-134. DOI:10.3969/j.issn.1674-3415.2012.03.025. (in Chinese)
[4] 李继方, 韩金刚, 汤天浩. 基于切换系统的开关变换器统一建模[J]. 华南理工大学学报(自然科学版), 2011, 39(10): 157-164. DOI:10.3969/j.issn.1000-565X.2011.10.027.
Li J F, Han J G, Tang T H. Unified modeling of switching converters based on switching system[J].Journal of South China University of Technology(Natural Science Edition), 2011, 39(10): 157-164. DOI:10.3969/j.issn.1000-565X.2011.10.027. (in Chinese)
[5] 陆益民, 张波, 尹丽云. DC/DC变换器的切换仿射线性系统模型及控制[J]. 中国电机工程学报, 2008, 28(15): 16-22. DOI:10.3321/j.issn:0258-8013.2008.15.003.
Lu Y M, Zhang B, Yin L Y. Switched affine systems modeling and control of DC/DC converters[J]. Proceedings of the CSEE, 2008, 28(15): 16-22. DOI:10.3321/j.issn:0258-8013.2008.15.003. (in Chinese)
[6] Mojallizadeh M R, Badamchizadeh M A. Switched linear control of interleaved boost converters[J]. International Journal of Electrical Power & Energy Systems, 2019, 109: 526-534. DOI:10.1016/j.ijepes.2019.02.030.
[7] Ren H L, Zong G D, Ahn C K. Event-triggered finite-time resilient control for switched systems: An observer-based approach and its applications to a boost converter circuit system model[J]. Nonlinear Dynamics, 2018, 94(4): 2409-2421. DOI:10.1007/s11071-018-4499-0.
[8] Licea M A R, Pinal F J P, Gutiérrez A I B, et al. A reconfigurable Buck, Boost, and Buck-Boost converter: Unified model and robust controller[J]. Mathematical Problems in Engineering, 2018, 2018: 1-8. DOI:10.1155/2018/6251787.
[9] 马西奎. 电力电子系统的非线性动力学分析[M]. 北京: 科学出版社, 2017: 322-323.
[10] Wang R H, Xing J C, Xiang Z R. Finite-time stability and stabilization of switched nonlinear systems with asynchronous switching[J].Applied Mathematics and Computation, 2018, 316: 229-244. DOI:10.1016/j.amc.2017.08.017.
[11] Wang R H, Xing J C, Li J L, et al. Finite-time quantised feedback asynchronously switched control of sampled-data switched linear systems[J]. International Journal of Systems Science, 2016, 47(14): 3320-3335. DOI:10.1080/00207721.2015.1129676.
[12] Long L J, Zhao J. Adaptive output-feedback neural control of switched uncertain nonlinear systems with average dwell time[J].IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(7): 1350-1362. DOI:10.1109/tnnls.2014.2341242.
[13] Sun X M, Zhao J, David J H. Stability and L2-gain analysis for switched delay systems: A delay-dependent method[J]. Automatica, 2006, 42(10): 1769-1774. DOI: 10.1016/j. automatica.2006.05.007.
[14] 贾美美. 电流控制型Boost变换器的一种新混沌控制策略[J]. 控制工程, 2017, 24(11): 2256-2262. DOI:10.14107/j.cnki.kzgc.150688.
Jia M M. A novel chaos control strategy for the current-controlled Boost converter[J]. Control Engineering of China, 2017, 24(11): 2256-2262. DOI:10.14107/j.cnki.kzgc.150688. (in Chinese)