[1]·ëöÎ,ÀîÁáÁá,ÍõÓÀ¿µ,µÈ.¸ßÎÂÍË»ð¶ÔʯīϩĦ²ÁÐÔÄܵÄÓ°Ïì[J].¶«ÄÏ´óѧѧ±¨(×ÔÈ»¿ÆÑ§°æ),2021,(1):115-120.[doi:10.3969/j.issn.1001-0505.2021.01.016]
¡¡Feng Xin,Li Lingling,Wang Yongkang,et al.Effects of high-temperature annealing on tribological properties of graphene[J].Journal of Southeast University (Natural Science Edition),2021,(1):115-120.[doi:10.3969/j.issn.1001-0505.2021.01.016]
µã»÷¸´ÖÆ

¸ßÎÂÍË»ð¶ÔʯīϩĦ²ÁÐÔÄܵÄÓ°Ïì()
·ÖÏíµ½£º

¡¶¶«ÄÏ´óѧѧ±¨(×ÔÈ»¿ÆÑ§°æ)¡·[ISSN:1001-0505/CN:32-1178/N]

¾í:
ÆÚÊý:
2021ÄêµÚ1ÆÚ
Ò³Âë:
115-120
À¸Ä¿:
»úе¹¤³Ì
³ö°æÈÕÆÚ:
2021-01-20

ÎÄÕÂÐÅÏ¢/Info

Title:
Effects of high-temperature annealing on tribological properties of graphene
×÷Õß:
·ëöÎÀîÁáÁáÍõÓÀ¿µÎºÖ¾ÓÂ
¶«ÄÏ´óѧ»úе¹¤³ÌѧԺ, ÄϾ© 211189; ¶«ÄÏ´óѧ½­ËÕʡ΢ÄÉÉúÎïÒ½ÁÆÆ÷еÉè¼ÆÓëÖÆÔìÖØµãʵÑéÊÒ, ÄϾ© 211189
Author(s):
Feng Xin Li Lingling Wang Yongkang Wei Zhiyong
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
¹Ø¼ü´Ê:
Ô­×ÓÁ¦ÏÔ΢¾µ ʯīϩ ÍË»ð ȱÏÝÃܶÈ
Keywords:
atomic force microscope(AFM) graphene annealing density of defects
·ÖÀàºÅ:
TH117.1
DOI:
10.3969/j.issn.1001-0505.2021.01.016
ÕªÒª:
ΪÁË̽ÌÖ¸ßλ·¾³ÏÂʯīϩĦ²ÁÐÔÄܱ仯¶ÔÆä×÷Ϊ¹ÌÌåÈ󻬼ÁÐÔÄܵÄÓ°Ïì,²ÉÓÃÔ­×ÓÁ¦ÏÔ΢¾µÑо¿Á˵¥²ãʯīϩÔÚ¿ÕÆøÖв»Í¬Î¶ÈÏÂÍË»ðºóµÄĦ²ÁѧÐÔÄÜ,±È½ÏÁ˲»Í¬Î¶ÈÏÂÍË»ðǰºóĦ²ÁÁ¦¼°ð¤¸½Á¦µÄ±ä»¯.ͨ¹ýÀ­Âü¹âÆ×¼ì²âʯīϩµÄȱÏݲ¢¼ÆËãʯīϩµÄȱÏÝÃܶÈ,×îºó½¨Á¢Á˲»Í¬ºÉÔØÏµ¥²ãʯīϩĦ²ÁÁ¦ËæÈ±ÏÝÃܶȵı仯¹ØÏµ.ʵÑé½á¹û±íÃ÷:ÔÚ¿ÕÆøÖÐÍË»ðºóʯīϩµÄĦ²ÁÁ¦¼°ð¤¸½Á¦ÏÔÖøÔöÇ¿,ÔÚ¿ÕÆøÖÐ300 ¡æÏÂÍË»ðºóʯīϩµÄĦ²ÁÁ¦Ô¼ÎªÔ­Ê¼Ê¯Ä«Ï©µÄ2~3±¶,𤸽Á¦Ôö¼ÓÁË1±¶×óÓÒ,ÇÒÍË»ðζÈÔ½¸ß,Ħ²ÁÁ¦ºÍ𤸽Á¦µÄÔöǿЧ¹ûÔ½Ã÷ÏÔ;ʯīϩÔÚ200~300 ¡æÖ®¼ä¿ªÊ¼²úÉúÃ÷ÏÔµÄȱÏÝ,ÇÒȱÏÝÃܶÈÒ²Ëæ×ÅÍË»ðζȵÄÉý¸ß¶øÔö´ó.¸ßÎÂÍË»ðºóʯīϩ²úÉúµÄ½á¹¹È±ÏÝÊǵ¼Öµ¥²ãʯīϩĦ²ÁÁ¦ºÍ𤸽Á¦·¢ÉúÖØÒª±ä»¯µÄÔ­Òò.
Abstract:
To explore the effects of the tribological property changes of the graphene on its performance as a solid lubricant at the high-temperature, the tribological properties of single-layer graphene after annealing in air at different temperatures were studied by an atomic force microscope(AFM), and the changes of the friction and the adhesion before and after annealing at different temperatures were compared. The defects of the graphene were detected by Raman spectroscopy and the defect density of the graphene was calculated. Finally, the relationship between the friction force of single-layer graphene and the defect density was established under different loads. Experimental results show that after annealing in air, the friction and the adhesion of the graphene are significantly enhanced. After annealing at 300 ¡æ in air, the friction of the graphene is about 2-3 times that of the original graphene, and the adhesion force roughly doubles. Moreover, the higher the annealing temperature is, the more obvious the enhancement effect of the friction and the adhesion is. The detectable defects initially appear between 200 and 300 ¡æ, and the defect density increases with the increase of the annealing temperature. The structural defects of the graphene after high-temperature annealing are the cause of important changes in the friction and the adhesion of single-layer graphene.

²Î¿¼ÎÄÏ×/References:

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. DOI:10.1126/science.1102896.
[2] Geim A K. Graphene: Status and prospects[J]. Science, 2009, 324(5934): 1530-1534. DOI:10.1126/science.1158877.
[3] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200. DOI:10.1038/nature04233.
[4] Zhang Y B, Tan Y W,Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry¡¯s phase in graphene[J]. Nature, 2005, 438(7065): 201-204. DOI:10.1038/nature04235.
[5] Demirbaÿðþ‰D T, Baykara M Z. Nanoscale tribology of graphene grown by chemical vapor deposition and transferred onto silicon oxide substrates[J]. Journal of Materials Research, 2016, 1(13): 1-10. DOI:10.1557/jmr.2016.11.
[6] Egberts P, Han G H, Liu X Z, et al. Frictional behavior of atomically thin sheets: Hexagonal-shaped graphene islands grown on copper by chemical vapor deposition[J]. ACS Nano, 2014, 8(5): 5010-5021. DOI:10.1021/nn501085g.
[7] Lavini F, Cal¨° A, Gao Y, et al. Friction and work function oscillatory behavior for an even and odd number of layers in polycrystalline MoS2[J]. Nanoscale, 2018, 10(17): 8304-8312. DOI:10.1039/c8nr00238j.
[8] Lee C, Li Q, Kalb W, et al. Frictional characteristics of atomically thin sheets[J].Science, 2010, 328(5974): 76-80. DOI:10.1126/science.1184167.
[9] Ptak F, Almeida C M, Prioli R. Velocity-dependent friction enhances tribomechanical differences between monolayer and multilayer graphene[J]. Scientific Reports, 2019, 9(1): 1-9. DOI:10.1038/s41598-019-51103-1.
[10] Schumacher A, Kruse N,Prins R, et al. Influence of humidity on friction measurements of supported MoS2 single layers[J]. Journal of Vacuum Science & Technology B, 1996, 14(2): 1264-1267. DOI:10.1116/1.588528.
[11] Tripathi M, Awaja F, Bizao R A, et al. Friction and adhesion of different structural defects of graphene[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44614-44623. DOI:10.1021/acsami.8b10294.
[12] Vazirisereshk M R, Ye H, Ye Z J, et al. Origin of nanoscale friction contrast between supported graphene, MoS2, and a graphene/MoS2 heterostructure[J]. Nano Letters, 2019, 19(8): 5496-5505. DOI:10.1021/acs.nanolett.9b02035.
[13] Ye Z J,Balkanci A, Martini A, et al. Effect of roughness on the layer-dependent friction of few-layer graphene[J]. Physical Review B, 2017, 96(11): 115401. DOI:10.1103/physrevb.96.115401.
[14] Berman D,Erdemir A, Sumant A V. Graphene: A new emerging lubricant[J]. Materials Today, 2014, 17(1): 31-42. DOI:10.1016/j.mattod.2013.12.003.
[15] Berman D,Erdemir A, Sumant A V. Approaches for achieving superlubricity in two-dimensional materials[J]. ACS Nano, 2018, 12(3): 2122-2137. DOI:10.1021/acsnano.7b09046.
[16] Kim K S, Lee H J, Lee C, et al. Chemical vapor deposition-grown graphene: The thinnest solid lubricant[J]. ACS Nano, 2011, 5(6): 5107-5114. DOI:10.1021/nn2011865.
[17] Nan H Y, Ni Z H, Wang J, et al. The thermal stability of graphene in air investigated by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2013, 44(7): 1018-1021. DOI:10.1002/jrs.4312.
[18] Wang Q,Bai B, Li Y, et al. Investigating the nano-tribological properties of chemical vapor deposition-grown single layer graphene on SiO2substrates annealed in ambient air[J]. RSC Advances, 2015, 5(13): 10058-10064. DOI:10.1039/c4ra12437e.
[19] Cançado L G, Jorio A, Ferreira E H M, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies[J]. Nano Letters, 2011, 11(8): 3190-3196. DOI:10.1021/nl201432g.
[20] Chen C C, Bao W Z, Chang C C, et al. Raman spectroscopy of substrate-induced compression and substrate doping in thermally cycled graphene[J]. Physical Review B, 2012, 85(3): 035431. DOI:10.1103/physrevb.85.035431.
[21] Tian S B, Yang Y, Liu Z, et al. Temperature-dependent Raman investigation on suspended graphene: Contribution from thermal expansion coefficient mismatch between graphene and substrate[J]. Carbon, 2016, 104: 27-32. DOI:10.1016/j.carbon.2016.03.046.
[22] Sader J E, Chon J W M, Mulvaney P. Calibration of rectangular atomic force microscope cantilevers[J]. Review of Scientific Instruments, 1999, 70(10): 3967-3969. DOI:10.1063/1.1150021.
[23] Schaefer D M, Gomez J. Atomic force microscope techniques for adhesion measurements[J].The Journal of Adhesion, 2000, 74(1/2/3/4): 341-359. DOI:10.1080/00218460008034535.
[24] Ferrari A C,Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology, 2013, 8(4): 235-246. DOI:10.1038/nnano.2013.46.
[25] Yan W, Phillips L C, Barbone M, et al. Long spin diffusion length in few-layer graphene flakes[J]. Physical Review Letters, 2016, 117(14): 147201. DOI: 10.1103/PhysRevLett.117.147201.
[26] Beams R,Cancado L G, Novotny L. Raman characterization of defects and dopants in graphene[J]. Journal of Physics Condensed Matter, 2015, 27(8): 083002. DOI:10.1088/0953-8984/27/8/083002.
[27] Chen J H, Cullen W G, Jang C, et al. Defect scattering in graphene[J]. Physical Review Letters, 2009, 102(23): 236805. DOI:10.1103/physrevlett.102.236805.
[28] Dresselhaus M S, Jorio A, Filho A G S, et al. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy[J]. Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, 2010, 368(1932): 5355-5377. DOI:10.1098/rsta.2010.0213.
[29] Eckmann A, Felten A, Mishchenko A, et al. Probing the nature of defects in graphene by Raman spectroscopy[J]. Nano Letters, 2012, 12(8): 3925-3930. DOI:10.1021/nl300901a.
[30] Butt H J, Cappella B,Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications[J]. Surface Science Reports, 2005, 59(1/2/3/4/5/6): 1-152. DOI:10.1016/j.surfrep.2005.08.003.
[31] Wei Z Y,Duan Z Q, Kan Y J, et al. Phonon energy dissipation in friction between graphene/graphene interface[J]. Journal of Applied Physics, 2020, 127(1): 015105. DOI:10.1063/1.5130705.
[32] Choi J S, Kim J S, Byun I S, et al. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene[J]. Science, 2011, 333(6042): 607-610. DOI: 10.1126/science.1207110.
[33] Filleter T, McChesney J L, Bostwick A, et al. Friction and dissipation in epitaxial graphene films[J]. Physical Review Letters, 2009, 102(8): 086102. DOI:10.1103/PhysRevLett.102.086102.
[34] Anno Y, Takeuchi M, Matsuoka M, et al. Effect of defect-induced carrier scattering on the thermoelectric power of graphene[J]. Applied Physics Letters, 2017, 110(26): 263501. DOI:10.1063/1.4989820.

ÏàËÆÎÄÏ×/References:

[1]ÕÅÑÞ,²·ºÆ,ÍõÓñ¾ê,µÈ.»ùÓÚÔ­×ÓÁ¦ÏÔ΢¾µµÄÄÉÃ׳߶ÈĦ²ÁÁ¦µÄËÙ¶ÈÒÀÀµ¹ØÏµ[J].¶«ÄÏ´óѧѧ±¨(×ÔÈ»¿ÆÑ§°æ),2012,42(2):286.[doi:10.3969/j.issn.1001-0505.2012.02.018]
¡¡Zhang Yan,Pu Hao,Wang Yujuan,et al.Velocity-dependent nano-scale friction under atomic force microscope[J].Journal of Southeast University (Natural Science Edition),2012,42(1):286.[doi:10.3969/j.issn.1001-0505.2012.02.018]
[2]ËïÓ±,µÈ.°×µ°°×ºÍʯīϩµÄ½á¹¹¼°ÆäÏ໥×÷ÓõķÖ×Ó¶¯Á¦Ñ§Ä£Äâ[J].¶«ÄÏ´óѧѧ±¨(×ÔÈ»¿ÆÑ§°æ),2014,44(1):123.[doi:10.3969/j.issn.1001-0505.2014.01.022]
¡¡Sun Ying,Ding Jiali,et al.Molecular dynamics simulations of albumin and graphene structures and their interaction[J].Journal of Southeast University (Natural Science Edition),2014,44(1):123.[doi:10.3969/j.issn.1001-0505.2014.01.022]
[3]¶­ÚS,Áõ³¿êÏ,¶ÎÔççù,µÈ.ʯīϩµÄĦ²ÁÁ¦ºÍ¸Õ¶È¹ØÏµµÄ·Ö×Ó¶¯Á¦Ñ§Ä£Äâ[J].¶«ÄÏ´óѧѧ±¨(×ÔÈ»¿ÆÑ§°æ),2017,47(1):28.[doi:10.3969/j.issn.1001-0505.2017.01.006]
¡¡Dong Yun,Liu Chenhan,Duan Zaoqi,et al.Molecular dynamics simulations of stiffness-dependent friction of graphene[J].Journal of Southeast University (Natural Science Edition),2017,47(1):28.[doi:10.3969/j.issn.1001-0505.2017.01.006]

±¸×¢/Memo

±¸×¢/Memo:
ÊÕ¸åÈÕÆÚ: 2020-06-11.
×÷Õß¼ò½é: ·ëöÎ(1996¡ª),ÄÐ,˶ʿÉú;κ־ÓÂ(ÁªÏµÈË),ÄÐ,²©Ê¿,¸±½ÌÊÚ,zywei@seu.edu.cn.
ÒýÓñ¾ÎÄ: ·ëöÎ,ÀîÁáÁá,ÍõÓÀ¿µ,µÈ.¸ßÎÂÍË»ð¶ÔʯīϩĦ²ÁÐÔÄܵÄÓ°Ïì[J].¶«ÄÏ´óѧѧ±¨(×ÔÈ»¿ÆÑ§°æ),2021,51(1):115-120. DOI:10.3969/j.issn.1001-0505.2021.01.016.
¸üÐÂÈÕÆÚ/Last Update: 2021-01-20