²Î¿¼ÎÄÏ×/References:
[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. DOI:10.1126/science.1102896.
[2] Geim A K. Graphene: Status and prospects[J]. Science, 2009, 324(5934): 1530-1534. DOI:10.1126/science.1158877.
[3] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200. DOI:10.1038/nature04233.
[4] Zhang Y B, Tan Y W,Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry¡¯s phase in graphene[J]. Nature, 2005, 438(7065): 201-204. DOI:10.1038/nature04235.
[5] Demirbaÿðþ‰D T, Baykara M Z. Nanoscale tribology of graphene grown by chemical vapor deposition and transferred onto silicon oxide substrates[J]. Journal of Materials Research, 2016, 1(13): 1-10. DOI:10.1557/jmr.2016.11.
[6] Egberts P, Han G H, Liu X Z, et al. Frictional behavior of atomically thin sheets: Hexagonal-shaped graphene islands grown on copper by chemical vapor deposition[J]. ACS Nano, 2014, 8(5): 5010-5021. DOI:10.1021/nn501085g.
[7] Lavini F, Cal¨° A, Gao Y, et al. Friction and work function oscillatory behavior for an even and odd number of layers in polycrystalline MoS2[J]. Nanoscale, 2018, 10(17): 8304-8312. DOI:10.1039/c8nr00238j.
[8] Lee C, Li Q, Kalb W, et al. Frictional characteristics of atomically thin sheets[J].Science, 2010, 328(5974): 76-80. DOI:10.1126/science.1184167.
[9] Ptak F, Almeida C M, Prioli R. Velocity-dependent friction enhances tribomechanical differences between monolayer and multilayer graphene[J]. Scientific Reports, 2019, 9(1): 1-9. DOI:10.1038/s41598-019-51103-1.
[10] Schumacher A, Kruse N,Prins R, et al. Influence of humidity on friction measurements of supported MoS2 single layers[J]. Journal of Vacuum Science & Technology B, 1996, 14(2): 1264-1267. DOI:10.1116/1.588528.
[11] Tripathi M, Awaja F, Bizao R A, et al. Friction and adhesion of different structural defects of graphene[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44614-44623. DOI:10.1021/acsami.8b10294.
[12] Vazirisereshk M R, Ye H, Ye Z J, et al. Origin of nanoscale friction contrast between supported graphene, MoS2, and a graphene/MoS2 heterostructure[J]. Nano Letters, 2019, 19(8): 5496-5505. DOI:10.1021/acs.nanolett.9b02035.
[13] Ye Z J,Balkanci A, Martini A, et al. Effect of roughness on the layer-dependent friction of few-layer graphene[J]. Physical Review B, 2017, 96(11): 115401. DOI:10.1103/physrevb.96.115401.
[14] Berman D,Erdemir A, Sumant A V. Graphene: A new emerging lubricant[J]. Materials Today, 2014, 17(1): 31-42. DOI:10.1016/j.mattod.2013.12.003.
[15] Berman D,Erdemir A, Sumant A V. Approaches for achieving superlubricity in two-dimensional materials[J]. ACS Nano, 2018, 12(3): 2122-2137. DOI:10.1021/acsnano.7b09046.
[16] Kim K S, Lee H J, Lee C, et al. Chemical vapor deposition-grown graphene: The thinnest solid lubricant[J]. ACS Nano, 2011, 5(6): 5107-5114. DOI:10.1021/nn2011865.
[17] Nan H Y, Ni Z H, Wang J, et al. The thermal stability of graphene in air investigated by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2013, 44(7): 1018-1021. DOI:10.1002/jrs.4312.
[18] Wang Q,Bai B, Li Y, et al. Investigating the nano-tribological properties of chemical vapor deposition-grown single layer graphene on SiO2substrates annealed in ambient air[J]. RSC Advances, 2015, 5(13): 10058-10064. DOI:10.1039/c4ra12437e.
[19] Cançado L G, Jorio A, Ferreira E H M, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies[J]. Nano Letters, 2011, 11(8): 3190-3196. DOI:10.1021/nl201432g.
[20] Chen C C, Bao W Z, Chang C C, et al. Raman spectroscopy of substrate-induced compression and substrate doping in thermally cycled graphene[J]. Physical Review B, 2012, 85(3): 035431. DOI:10.1103/physrevb.85.035431.
[21] Tian S B, Yang Y, Liu Z, et al. Temperature-dependent Raman investigation on suspended graphene: Contribution from thermal expansion coefficient mismatch between graphene and substrate[J]. Carbon, 2016, 104: 27-32. DOI:10.1016/j.carbon.2016.03.046.
[22] Sader J E, Chon J W M, Mulvaney P. Calibration of rectangular atomic force microscope cantilevers[J]. Review of Scientific Instruments, 1999, 70(10): 3967-3969. DOI:10.1063/1.1150021.
[23] Schaefer D M, Gomez J. Atomic force microscope techniques for adhesion measurements[J].The Journal of Adhesion, 2000, 74(1/2/3/4): 341-359. DOI:10.1080/00218460008034535.
[24] Ferrari A C,Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology, 2013, 8(4): 235-246. DOI:10.1038/nnano.2013.46.
[25] Yan W, Phillips L C, Barbone M, et al. Long spin diffusion length in few-layer graphene flakes[J]. Physical Review Letters, 2016, 117(14): 147201. DOI: 10.1103/PhysRevLett.117.147201.
[26] Beams R,Cancado L G, Novotny L. Raman characterization of defects and dopants in graphene[J]. Journal of Physics Condensed Matter, 2015, 27(8): 083002. DOI:10.1088/0953-8984/27/8/083002.
[27] Chen J H, Cullen W G, Jang C, et al. Defect scattering in graphene[J]. Physical Review Letters, 2009, 102(23): 236805. DOI:10.1103/physrevlett.102.236805.
[28] Dresselhaus M S, Jorio A, Filho A G S, et al. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy[J]. Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, 2010, 368(1932): 5355-5377. DOI:10.1098/rsta.2010.0213.
[29] Eckmann A, Felten A, Mishchenko A, et al. Probing the nature of defects in graphene by Raman spectroscopy[J]. Nano Letters, 2012, 12(8): 3925-3930. DOI:10.1021/nl300901a.
[30] Butt H J, Cappella B,Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications[J]. Surface Science Reports, 2005, 59(1/2/3/4/5/6): 1-152. DOI:10.1016/j.surfrep.2005.08.003.
[31] Wei Z Y,Duan Z Q, Kan Y J, et al. Phonon energy dissipation in friction between graphene/graphene interface[J]. Journal of Applied Physics, 2020, 127(1): 015105. DOI:10.1063/1.5130705.
[32] Choi J S, Kim J S, Byun I S, et al. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene[J]. Science, 2011, 333(6042): 607-610. DOI: 10.1126/science.1207110.
[33] Filleter T, McChesney J L, Bostwick A, et al. Friction and dissipation in epitaxial graphene films[J]. Physical Review Letters, 2009, 102(8): 086102. DOI:10.1103/PhysRevLett.102.086102.
[34] Anno Y, Takeuchi M, Matsuoka M, et al. Effect of defect-induced carrier scattering on the thermoelectric power of graphene[J]. Applied Physics Letters, 2017, 110(26): 263501. DOI:10.1063/1.4989820.
ÏàËÆÎÄÏ×/References:
[1]ÕÅÑÞ,²·ºÆ,ÍõÓñ¾ê,µÈ.»ùÓÚÔ×ÓÁ¦ÏÔ΢¾µµÄÄÉÃ׳߶ÈĦ²ÁÁ¦µÄËÙ¶ÈÒÀÀµ¹ØÏµ[J].¶«ÄÏ´óѧѧ±¨(×ÔÈ»¿ÆÑ§°æ),2012,42(2):286.[doi:10.3969/j.issn.1001-0505.2012.02.018]
¡¡Zhang Yan,Pu Hao,Wang Yujuan,et al.Velocity-dependent nano-scale friction under atomic force microscope[J].Journal of Southeast University (Natural Science Edition),2012,42(1):286.[doi:10.3969/j.issn.1001-0505.2012.02.018]
[2]ËïÓ±,µÈ.°×µ°°×ºÍʯīϩµÄ½á¹¹¼°ÆäÏ໥×÷ÓõķÖ×Ó¶¯Á¦Ñ§Ä£Äâ[J].¶«ÄÏ´óѧѧ±¨(×ÔÈ»¿ÆÑ§°æ),2014,44(1):123.[doi:10.3969/j.issn.1001-0505.2014.01.022]
¡¡Sun Ying,Ding Jiali,et al.Molecular dynamics simulations of albumin and graphene structures and their interaction[J].Journal of Southeast University (Natural Science Edition),2014,44(1):123.[doi:10.3969/j.issn.1001-0505.2014.01.022]
[3]¶ÚS,Áõ³¿êÏ,¶ÎÔççù,µÈ.ʯīϩµÄĦ²ÁÁ¦ºÍ¸Õ¶È¹ØÏµµÄ·Ö×Ó¶¯Á¦Ñ§Ä£Äâ[J].¶«ÄÏ´óѧѧ±¨(×ÔÈ»¿ÆÑ§°æ),2017,47(1):28.[doi:10.3969/j.issn.1001-0505.2017.01.006]
¡¡Dong Yun,Liu Chenhan,Duan Zaoqi,et al.Molecular dynamics simulations of stiffness-dependent friction of graphene[J].Journal of Southeast University (Natural Science Edition),2017,47(1):28.[doi:10.3969/j.issn.1001-0505.2017.01.006]