[1]沈晨,曹智国,章定文.水泥固化铅污染土的碳化机理及碳化度评价[J].东南大学学报(自然科学版),2021,(1):129-137.[doi:10.3969/j.issn.1001-0505.2021.01.018]
 Shen Chen,Cao Zhiguo,Zhang Dingwen.Carbonation mechanism and carbonation degree evaluation on cement-stabilized lead-contaminated clay[J].Journal of Southeast University (Natural Science Edition),2021,(1):129-137.[doi:10.3969/j.issn.1001-0505.2021.01.018]
点击复制

水泥固化铅污染土的碳化机理及碳化度评价()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
期数:
2021年第1期
页码:
129-137
栏目:
交通运输工程
出版日期:
2021-01-20

文章信息/Info

Title:
Carbonation mechanism and carbonation degree evaluation on cement-stabilized lead-contaminated clay
作者:
沈晨1曹智国12章定文1
1东南大学交通学院, 南京 211189; 2黄河勘测规划设计研究院有限公司, 郑州 450003
Author(s):
Shen Chen1 Cao Zhiguo12 Zhang Dingwen1
1 School of Transportation, Southeast University, Nanjing 211189, China
2 Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450003, China
关键词:
固化/稳定化 铅污染黏性土 碳化作用 微观机理 碳化度
Keywords:
stabilization/solidification lead-contaminated clay carbonation microscopic mechanism carbonization degree
分类号:
U41
DOI:
10.3969/j.issn.1001-0505.2021.01.018
摘要:
为了探究水泥固化处理重金属污染场地在碳化作用下的微观结构演变规律及碳化度表征指标,选取典型加速碳化7 d后的铅污染土试样进行分析.采用X射线衍射、电镜扫描和热重分析等测试方法,分析了碳化作用对矿物成分、铅的赋存形态、孔隙分布特征及孔隙溶液pH值的影响规律.结果表明:固化重金属污染土中Pb主要以硅酸盐、氢氧化物等化学沉淀的形式被固定;碳化作用下水泥水化产物氢氧化钙和水化硅酸钙逐渐转化为摩尔体积更大的CaCO3和含硅凝胶,导致固化土总孔隙体积减小;固化污染土碳化度随试样深度的增大而减小,碳化部分的碳化度介于24%~28%之间,未碳化部分的碳化度介于0~3%之间;碳化度与孔隙溶液pH值成良好的线性关系.测量孔隙溶液pH值可间接评价水泥固化铅污染黏性土的碳化度.
Abstract:
To explore the microstructure evolution rule and the index of carbonation degree of heavy metal contaminated sites treated by cement solidification under the carbonation, the soil samples with lead contamination after typical accelerated carbonation for 7 d were selected for analysis. A series of X-ray diffraction, scanning electron microscopy and thermogravimetric were used to analyze the effects of carbonation on the mineral composition, the mineral forms of lead, the pore distribution density, and the pH value of pore solution. The results show that Pb in the solidified heavy metal contaminated soil is mainly fixed in the form of silicate, hydroxide and other chemical precipitation. Under the carbonization, the cement hydration products calcium hydroxide and hydrated calcium silicate are gradually converted into CaCO3 and silicon-containing gel with larger molar volume, resulting in a decrease in the total pore volume of the solidified soil. The carbonization degree of solidified contaminated soil decreases with the increase of the sample depth. The carbonization degree of the carbonized part is between 24% and 28%, and the carbonization degree of the uncarbonized part is between 0 and 3%. There is a linear relationship between the carbonation degree and the pH value of pore solution. The carbonation degree of cement solidified lead-contaminated clay can be indirectly evaluated by measuring the pH value of the pore solution.

参考文献/References:

[1] 陈云敏, 施建勇, 朱伟, 等. 环境岩土工程研究综述[J]. 土木工程学报, 2012, 45(4): 165-182.
  Chen Y M, Shi J Y, Zhu W, et al. A review of geoenvironmental engineering[J]. China Civil Engineering Journal, 2012, 45(4): 165-182.(in Chinese)
[2]郝汉舟, 陈同斌, 靳孟贵, 等. 重金属污染土壤稳定/固化修复技术研究进展[J]. 应用生态学报, 2011, 22(3): 816-824.
  Hao H Z, Chen T B, Jin M G, et al. Recent advance in solidification/stabilization technology for the remediation of heavy metals contaminated soil[J]. Chinese Journal of Applied Ecology, 2011, 22(3): 816-824.(in Chinese)
[3] Neves R, Branco F,de Brito J. Field assessment of the relationship between natural and accelerated concrete carbonation resistance[J]. Cement and Concrete Composites, 2013, 41: 9-15. DOI: 10.1016/j.cemconcomp.2013.04.006.
[4] Jiang N J, Du Y J, Liu S Y, et al. Experimental investigation of the compressibility behaviour of cement-solidified/stabilised zinc-contaminated Kaolin clay[J].Géotechnique Letters, 2014, 4(1): 27-32. DOI:10.1680/geolett.13.00079.
[5] Branch J L, Epps R, Kosson D S. The impact of carbonation on bulk and ITZ porosity in microconcrete materials with fly ash replacement[J].Cement and Concrete Research, 2018, 103: 170-178. DOI:10.1016/j.cemconres.2017.10.012.
[6]章定文, 张涛, 刘松玉, 等. 碳化作用对水泥固化/稳定化铅污染土溶出特性影响[J]. 岩土力学, 2016, 37(1): 41-48, 56.
  Zhang D W, Zhang T, Liu S Y, et al. Effect of carbonation on leaching properties of cement stabilized/solidified lead contaminated soil[J]. Rock and Soil Mechanics, 2016, 37(1): 41-48, 56.(in Chinese)
[7] Fitch J. Characterisation of environmentally exposed cement-based stabilised/solidified industrial waste[J].Journal of Hazardous Materials, 2003, 101(3): 239-255. DOI:10.1016/s0304-3894(03)00174-2.
[8] Antemir A, Hills C D, Carey P J, et al. Long-term performance of aged waste forms treated by stabilization/solidification[J].Journal of Hazardous Materials, 2010, 181(1/2/3): 65-73. DOI:10.1016/j.jhazmat.2010.04.082.
[9] Branch J L, Kosson D S, Garrabrants A C, et al. The impact of carbonation on the microstructure and solubility of major constituents in microconcrete materials with varying alkalinities due to fly ash replacement of ordinary Portland cement[J].Cement and Concrete Research, 2016, 89: 297-309. DOI:10.1016/j.cemconres.2016.08.019.
[10] Neves A Jr, Toledo Filho R D, de Moraes Rego Fairbairn E, et al. The effects of the early carbonation curing on the mechanical and porosity properties of high initial strength Portland cement pastes[J].Construction and Building Materials, 2015, 77: 448-454. DOI:10.1016/j.conbuildmat.2014.12.072.
[11] Ashraf W, Olek J, Jain J. Microscopic features of non-hydraulic calcium silicate cement paste and mortar[J].Cement and Concrete Research, 2017, 100: 361-372. DOI:10.1016/j.cemconres.2017.07.001.
[12] Mo L W, Panesar D K. Accelerated carbonation—a potential approach to sequester CO2 in cement paste containing slag and reactive MgO[J]. Cement and Concrete Composites, 2013, 43: 69-77. DOI:10.1016/j.cemconcomp.2013.07.001.
[13] Song H W, Kwon S J. Permeability characteristics of carbonated concrete considering capillary pore structure[J].Cement and Concrete Research, 2007, 37(6): 909-915. DOI:10.1016/j.cemconres.2007.03.011.
[14] Gerven T V, Baelen D V, Dutré V, et al. Influence of carbonation and carbonation methods on leaching of metals from mortars[J]. Cement and Concrete Research, 2004, 34(1): 149-156. DOI: 10.1016/S0008-8846(03)00255-2.
[15] Chang C F, Chen J W. The experimental investigation of concrete carbonation depth[J].Cement and Concrete Research, 2006, 36(9): 1760-1767. DOI:10.1016/j.cemconres.2004.07.025.
[16] Boardman D J. Lime stabilization: Clay-metal-lime interactions[D]. Loughborough: Loughborough University, 1999.
[17] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.
[18] American Society for Testing and Materials. Standard test method for pH of soils: ASTM D4972-01[S]. Philadelphia, USA: ASTM Press, 2007.
[19] 刘兆鹏, 杜延军, 刘松玉, 等. 淋滤条件下水泥固化铅污染高岭土的强度及微观特性的研究[J]. 岩土工程学报, 2014, 36(3): 547-554.
  Liu Z P, Du Y J, Liu S Y, et al. Strength and microstructural characteristics of cement solidified lead-contaminated Kaolin exposed to leaching circumstances[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 547-554.(in Chinese)
[20] Moon D H, Dermatas D. An evaluation of lead leachability from stabilized/solidified soils under modified semi-dynamic leaching conditions[J].Engineering Geology, 2006, 85(1/2): 67-74. DOI:10.1016/j.enggeo.2005.09.028.
[21] Grubb D G, Moon D H, Reilly T, et al. Stabilization/solidification(S/S)of Pb and W contaminated soils using Type Ⅰ/Ⅱ Portland cement, silica fume cement and cement kiln dust[J]. Global NEST Journal, 2009, 11(3): 267-282. DOI: 10.1111/j.1365-2486.2008.01840.x.
[22] 李素昉. 水泥微观形貌的图像分析[D]. 济南: 济南大学, 2004.
  Li S F. Image analysis of cement micro-morphology[D]. Jinan: Jinan University, 2004.(in Chinese)
[23] Morandeau A, Thiéry M, Dangla P. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties[J].Cement and Concrete Research, 2014, 56: 153-170. DOI:10.1016/j.cemconres.2013.11.015.
[24] Jain J, Neithalath N. Analysis of calcium leaching behavior of plain and modified cement pastes in pure water[J].Cement and Concrete Composites, 2009, 31(3): 176-185. DOI:10.1016/j.cemconcomp.2009.01.003.
[25] Chang C F, Chen J W. The experimental investigation of concrete carbonation depth[J].Cement and Concrete Research, 2006, 36(9): 1760-1767. DOI:10.1016/j.cemconres.2004.07.025.

备注/Memo

备注/Memo:
收稿日期: 2020-07-28.
作者简介: 沈晨(1992—),男,博士生;章定文(联系人),男,博士,教授,博士生导师,zhangdw@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51578148).
引用本文: 沈晨,曹智国,章定文.水泥固化铅污染土的碳化机理及碳化度评价[J].东南大学学报(自然科学版),2021,51(1):129-137. DOI:10.3969/j.issn.1001-0505.2021.01.018.
更新日期/Last Update: 2021-01-20